Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
2.
ACS Med Chem Lett ; 10(11): 1518-1523, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749904

ABSTRACT

Herein we report the discovery of pyrazolocarboxamides as novel, potent, and kinase selective inhibitors of receptor interacting protein 2 kinase (RIP2). Fragment based screening and design principles led to the identification of the inhibitor series, and X-ray crystallography was used to inform key structural changes. Through key substitutions about the N1 and C5 N positions on the pyrazole ring significant kinase selectivity and potency were achieved. Bridged bicyclic pyrazolocarboxamide 11 represents a selective and potent inhibitor of RIP2 and will allow for a more detailed investigation of RIP2 inhibition as a therapeutic target for autoinflammatory disorders.

3.
J Med Chem ; 62(14): 6482-6494, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31265286

ABSTRACT

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor 3, currently in phase 1 clinical studies. Compound 3 potently binds to RIP2 kinase with good kinase specificity and has excellent activity in blocking many proinflammatory cytokine responses in vivo and in human IBD explant samples. The highly favorable physicochemical and ADMET properties of 3 combined with high potency led to a predicted low oral dose in humans.


Subject(s)
Benzothiazoles/pharmacology , Phosphates/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Benzothiazoles/therapeutic use , Colitis/drug therapy , Dogs , Drug Discovery , Humans , Male , Mice , Molecular Docking Simulation , Phosphates/chemistry , Phosphates/pharmacokinetics , Phosphates/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/therapeutic use , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Swine , Swine, Miniature
5.
Nature ; 564(7736): 439-443, 2018 12.
Article in English | MEDLINE | ID: mdl-30405246

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Drug Design , Membrane Proteins/agonists , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Humans , Ligands , Membrane Proteins/immunology , Mice , Models, Molecular , Nucleotides, Cyclic/metabolism
6.
ACS Med Chem Lett ; 9(10): 1039-1044, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344914

ABSTRACT

RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 µM).

7.
J Med Chem ; 59(10): 4867-80, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27109867

ABSTRACT

RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis.


Subject(s)
Aminoquinolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Sulfones/pharmacology , Aminoquinolines/blood , Aminoquinolines/chemistry , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Structure-Activity Relationship , Sulfones/blood , Sulfones/chemistry
8.
Bioorg Med Chem ; 23(21): 7000-6, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26455654

ABSTRACT

Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (ß,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Protein Kinase Inhibitors/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
9.
Acc Chem Res ; 44(3): 180-93, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21175156

ABSTRACT

Peptides and proteins, evolved by nature to perform vital biological functions, would constitute ideal candidates for therapeutic intervention were it not for their generally poor pharmacokinetic profiles. Nonpeptide peptidomimetics have thus been pursued because they might overcome these limitations while maintaining both the potency and selectivity of the parent peptide or protein. Since the late 1980s, we have sought to design, synthesize, and evaluate a novel, proteolytically stable nonpeptide peptidomimetic scaffold consisting of a repeating structural unit amenable to iterative construction; a primary concern is maintaining both the appropriate peptide-like side-chains and requisite hydrogen bonding. In this Account, we detail how efforts in the Smith-Hirschmann laboratories culminated in the identification of the 3,5-linked polypyrrolinone scaffold. We developed effective synthetic protocols, both in solution and on solid supports, for iterative construction of diverse polypyrrolinones that present functionalized peptide-like side-chains. As a result of the rigid nature of the pyrrolinone scaffold, control over the backbone conformation could be exerted by modulation of the stereogenicity of the constituent monomers and the network of intramolecular hydrogen bonding. The extended conformation of the homochiral 3,5-linked polypyrrolinone scaffold proved to be an excellent mimic for ß-strands and ß-sheets. Application to enzyme inhibitor design and synthesis led not only to modest inhibitors of the aspartic acid protease renin and the matrix metalloprotease class of enzymes, but importantly to bioavailable HIV-1 protease inhibitors with subnanomolar binding constants. The design and synthesis of a competent peptide-pyrrolinone hybrid ligand for the class II major histocompatibility complex (MHC) antigen protein HLA-DR1 further demonstrated the utility of the 3,5-polypyrrolinone motif as a mimic for the extended polyproline type II peptide backbone. Equally important, we sought to define, by synthesis, the additional conformational space accessible to the polypyrrolinone structural motif, with the ultimate goal of accessing pyrrolinone-based turn and helix mimetics. Toward this end, a mono-N-methylated bispyrrolinone was found to adopt an extended helical array in the solid state. Subsequent synthesis of d,l-alternating (heterochiral) tetrapyrrolinones both validated the expected turn conformations in solution and led to a functionally active mimetic of a peptidal ß-turn (similar to somatostatin). Finally, the design, synthesis, and structural evaluation of both acyclic and cyclic heterochiral (that is, d,l-alternating) hexapyrrolinones yielded nanotube-like assemblies in the solid state. Taken together, these results illustrate the remarkable potential of the 3,5-linked polypyrrolinone scaffold as ß-strand, ß-sheet, ß-turn, and potentially helical peptidomimetics.


Subject(s)
Peptidomimetics , Pyrroles , Animals , Binding Sites , Crystallography, X-Ray , Dogs , Drug Design , HIV Protease/metabolism , HIV Protease Inhibitors , HLA-DR1 Antigen/metabolism , Humans , Hydrogen Bonding , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/metabolism , Models, Molecular , Molecular Conformation , Peptides/chemistry , Peptides/metabolism , Peptidomimetics/analysis , Peptidomimetics/chemical synthesis , Peptidomimetics/pharmacology , Protein Binding , Protein Structure, Secondary , Pyrroles/analysis , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Renin/antagonists & inhibitors , Renin/metabolism , Somatostatin/antagonists & inhibitors , Somatostatin/metabolism , Stereoisomerism , Structure-Activity Relationship
10.
Org Lett ; 12(13): 2990-3, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20518540

ABSTRACT

To expand the potential conformational space available to the polypyrroline structural motif, an open chain, D,L-alternating hexapyrrolinone was designed and synthesized. Structural studies, including solution NMR and X-ray crystallographic analysis, revealed that the hexapyrrolinone adopts a turn conformation both in solution and in the solid state, with aggregation in solution and a nanotube-like quaternary structure in the crystal.


Subject(s)
Nanotubes/chemistry , Polymers/chemical synthesis , Pyrrolidinones/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Polymers/chemistry , Pyrrolidinones/chemistry , Stereoisomerism
11.
Org Lett ; 12(13): 2994-7, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20518572

ABSTRACT

The design, synthesis, and structural analysis of two macrocyclic D,L-alternating hexapyrrolinones have been achieved. These cyclic peptide mimics adopt a flat, hexagonal conformation, stabilized by intramolecular hydrogen bonding between adjacent pyrrolinone rings. Extensive NMR studies and X-ray analysis reveal, respectively, that the macrocyclic hexapyrrolinones aggregate in solution and in the solid state form staggered stacked nanotube-like assemblies.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Polymers/chemical synthesis , Pyrrolidinones/chemical synthesis , Crystallography, X-Ray , Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Polymers/chemistry , Pyrrolidinones/chemistry , Stereoisomerism
12.
J Phys Chem B ; 113(24): 8412-7, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19459617

ABSTRACT

The tryptophan dipeptide (NATMA) in D2O shows two conformers having distinctive acetyl end amide-I' transition frequencies. In 2D echo spectroscopy, cross peaks between these conformer transitions are used to show that they are undergoing exchange on the 1.5 ps time scale. Simulations suggest that the accessibility of the amide group to water is restricted in one of the conformations.


Subject(s)
Deuterium Oxide/chemistry , Dipeptides/chemistry , Tryptophan/chemistry , Computer Simulation , Models, Chemical , Spectrophotometry, Infrared
13.
J Phys Chem B ; 111(11): 3010-8, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17388413

ABSTRACT

The linear infrared and two-dimensional infrared (2D IR) spectra in the amide-I region of N-acetyl tryptophan methyl amide (NATMA) in solvents of varying polarity are reported. The two amide-I transitions have been assigned unambiguously by using 13C isotopic substitution of the carbonyl group. The amide unit at the amino end shows a lower transition frequency in CH2Cl2 and methanol, while the acetyl end has a lower transition frequency in D2O. Multiple conformers exist in CH2Cl2 and methanol, but only one conformer is evident in D2O. The 2D IR cross peaks from the intermode coupling yield off-diagonal anharmonicities 2.5 +/- 0.5, 3.25 +/- 0.5, and 3.0 +/- 0.5 cm(-1) in CH2Cl2, methanol, and D2O, respectively, which by simple matrix diagonalization yield the coupling constants 8.0 +/- 0.5, 8.0 +/- 1.0, and 5.5 +/- 1.0 cm(-1). The major conformer in CH2Cl2 corresponds to a C7 structure, in agreement with that found in the gas phase [Dian, B. C.; Longarte, A.; Mercier, S.; Evans, D. A.; Wales, D. J.; Zwier, T. S. J. Chem. Phys. 2002, 117, 10688-10702] with intramolecular hydrogen bonding between the acetyl end C=O and the amino end N-H. The backbone dihedral angles (phi, psi) are determined to be in the ranges of (-55 +/- 5 degrees , 30 +/- 5 degrees ), (120 +/- 10 degrees , -20 +/- 10 degrees ), and (+/-160 +/- 10 degrees , +/-75 +/- 10 degrees ) in CH2Cl2, methanol, and D2O, respectively.


Subject(s)
Tryptophan/analogs & derivatives , Computer Simulation , Models, Molecular , Molecular Conformation , Solutions/chemistry , Spectrophotometry, Infrared , Time Factors , Tryptophan/chemistry
14.
Bioorg Med Chem Lett ; 16(4): 859-63, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16298527

ABSTRACT

A series of monopyrrolinone-based HIV-1 protease inhibitors possessing rationally designed P2' side chains have been synthesized and evaluated for activity against wild-type HIV-1 protease. The most potent inhibitor displays subnanomolar potency in vitro for the wild-type HIV-1 protease. Additionally, the monopyrrolinone inhibitors retain potency in cellular assays against clinically significant mutant forms of the virus. X-ray structures of these inhibitors bound in the wild-type enzyme reveal important insights into the observed biological activity.


Subject(s)
HIV Protease Inhibitors , HIV Protease/drug effects , Pyrrolidinones , Animals , Cattle , Crystallography, X-Ray , Drug Design , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , In Vitro Techniques , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Mutation , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Structure-Activity Relationship
15.
Org Lett ; 7(3): 399-402, 2005 Feb 03.
Article in English | MEDLINE | ID: mdl-15673249

ABSTRACT

[structure: see text] Tetrapyrrolinone somatostatin (SRIF) mimetics (cf. 1), based on a heterochiral (D,L-mixed) pyrrolinone scaffold, were designed, synthesized, and evaluated for biological activity. The iterative synthetic sequence, incorporating the requisite functionalized coded and noncoded amino acid side chains, comprised a longest linear synthetic sequence of 23 steps. Binding affinities at two somatostatin receptor subtypes (hsst 4 and 5) reveal micromolar activity, demonstrating that the d,l-mixed pyrrolinone scaffold can be employed to generate functional mimetics of peptide beta-turns.


Subject(s)
Hormone Antagonists/chemistry , Pyrroles/chemical synthesis , Pyrroles/metabolism , Somatostatin/chemistry , Somatostatin/metabolism , Amino Acids/chemistry , Drug Design , Hormone Antagonists/metabolism , Humans , Indicators and Reagents , Ligands , Models, Molecular , Molecular Mimicry , Protein Conformation , Pyrroles/pharmacology , Receptors, Somatostatin/metabolism
16.
J Med Chem ; 46(10): 1831-44, 2003 May 08.
Article in English | MEDLINE | ID: mdl-12723947

ABSTRACT

The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors [(-)-6, (-)-7, (-)-23, (+)-24] based upon the 3,5,5-trisubstituted pyrrolin-4-one scaffold is described. Use of a monopyrrolinone scaffold leads to inhibitors with improved cellular transport properties relative to the earlier inhibitors based on bispyrrolinones and their peptide counterparts. The most potent inhibitor (-)-7 displayed 13% oral bioavailability in dogs. X-ray structure analysis of the monopyrrolinone compounds cocrystallized with the wild-type HIV-1 protease provided valuable information on the interactions between the inhibitors and the HIV-1 enzyme. In each case, the inhibitors assumed similar orientations for the P2'-P1 substituents, along with an unexpected hydrogen bond of the pyrrolinone NH with Asp225. Interactions with the S2 pocket, however, were not optimal, as illustrated by the inclusion of a water molecule in two of the three inhibitor-enzyme complexes. Efforts to increase affinity by displacing the water molecule with second and third generation inhibitors did not prove successful. Lack of success with this venture is a testament to the difficulty of accurately predicting the many variables that influence and build binding affinity. Comparison of the inhibitor positions in three complexes with that of Indinavir revealed displacements of the protease backbones in the enzyme flap region, accompanied by variations in hydrogen bonding to accommodate the monopyrrolinone ring. The binding orientation of the pyrrolinone-based inhibitors may explain their sustained efficacy against mutant strains of the HIV-1 protease enzyme as compared to Indinavir.


Subject(s)
Carbamates/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , HIV Protease/chemistry , Pyrroles/chemical synthesis , Animals , Biological Availability , Carbamates/chemistry , Carbamates/pharmacokinetics , Crystallography, X-Ray , Dogs , Drug Design , HIV Protease/genetics , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Models, Molecular , Mutation , Protein Binding , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL