Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 15(6): 1849-1876, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911168

ABSTRACT

Hyperuricemia is characterized by higher-than-normal levels of uric acid in the bloodstream. This condition can increase the likelihood of developing gout, a form of arthritis triggered by the deposition of urate crystals in the joints, leading to inflammation and pain. An essential part of purine metabolism is played by the enzyme xanthine oxidase (XO), which transforms xanthine and hypoxanthine into uric acid. Despite its vital role, diseases such as gout have been associated with elevated uric acid levels, which are linked to increased XO activity. To manage hyperuricemia, this study focuses on potential nitrogen based heterocyclic compounds that may serve as XO inhibitors which may lower uric acid levels and prevent hyperuricemia. Xanthine oxidase inhibitors are a class of medications used to treat conditions like gout by reducing the production of uric acid. The present study demonstrates numerous compounds, particularly nitrogen containing heterocyclic compounds including their synthesis, structure-activity relationship, and molecular docking studies. This paper also contains drugs undergoing clinical studies and the xanthine oxidase inhibitors that have been approved by the FDA.

2.
Curr Med Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797910

ABSTRACT

BACKGROUND: Infection remains a significant global health concern, with millions of new cases and deaths occurring due to infectious diseases. Currently, chemoprophylaxis and chemotherapy are the primary treatments, but side effects and toxicities pose challenges. Pathogenic microorganisms have developed resistance to antimicrobial medications. Nitrogen containing heterocyclic scaffolds possess the potential in drug discovery and are explored in various fields like pharmaceuticals, cosmetics, and agrochemicals. To minimize antimicrobial drug resistance, there is a need to design potent, safer antimicrobial lead compounds with higher selectivity and minimal cytotoxicity. OBJECTIVES: The present review aims to outline several recent developments in medicinal chemistry aspect of nitrogenous heterocyclic derivatives with the following purposes: (1) To cast light on the recent literature reports of the last eight years ranging from 2015 to 2023 describing anti-microbial potential of nitrogen-containing heterocyclic derivatives which includes pyrazole, pyrazoline, imidazole, tetrazole and quinoline; (2) To brief the recent developments in the medicinal chemistry of nitrogenous heterocyclic derivatives that is directed towards their anti-microbial profile; (3) To summarize the complete correlation of structural features of nitrogenous heterocyclic molecules with the pharmacological action including in silico as well as mechanistic studies to provide thoughts accompanying the generation of lead molecules. METHODS: Antimicrobial potential of nitrogenous heterocyclic molecules has been displayed by relating the structural features of various lead candidates with their in vitro as well as in vivo antimicrobial outcomes. In contrast, in silico computational analysis from different articles also helped to predict the SAR of potent molecules. RESULTS: Nitrogen containing heterocycles are involved in a range of natural to synthetic analogues with keen antimicrobial potency. It is an emerging need to generate new nitrogenous heterocyclic molecules in order to tackle the drug resistance in micro-organisms with more targeted selectivity as well as specificity. CONCLUSION: To limit the side effects associated with them and to combat the microbes acquired resistance towards the current drug regimen, novel nitrogenous heterocycle based antimicrobial agents are essential to be developed. This review connects the structural units present in lead compounds with their promising antimicrobial action.

3.
Lab Chip ; 24(12): 3169-3182, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804084

ABSTRACT

Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.


Subject(s)
Cell Survival , Deep Learning , Spheroids, Cellular , Humans , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Survival/drug effects , Drug Screening Assays, Antitumor/instrumentation , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices
4.
Curr Top Med Chem ; 24(17): 1490-1503, 2024.
Article in English | MEDLINE | ID: mdl-38757334

ABSTRACT

Nutraceuticals are products that provide both nutritional and therapeutic benefits. These compounds can slow the aging process and provide physiological effects shielding individuals from acute and chronic diseases. People's interests have shifted from allopathic to Ayurvedic to nutraceuticals in recent years. These are often common dietary supplements that have drawn customers worldwide because of their high nutritional safety and lack of adverse effects when used for a long time. Although conventional dosage forms, including pills, tablets, and semi-solids, are still available, they nevertheless have poorer bioavailability, less stability, and less effectiveness for targeted delivery of bioactives. The use of effective nanocomplex systems as nano-antioxidants using nanotechnology has become a promising field. Among its many uses, nanotechnology is mostly used to create foods and nutraceuticals that are more bioavailable, less toxic, and more sustainable. Additionally, it has been emphasized how precisely nano-pharmaceuticals for oxidative stress produce the desired effects. These improvements show improved antioxidant delivery to the target region, reduced leakage, and increased targeting precision. The outcomes demonstrated that oxidative stress-related illnesses can be effectively treated by lowering ROS levels with the use of nanonutraceuticals. The major ideas and uses of nano-nutraceuticals for health are outlined in this review, with an emphasis on reducing oxidative stress.


Subject(s)
Antioxidants , Dietary Supplements , Oxidative Stress , Oxidative Stress/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Nanotechnology , Animals
5.
Bioorg Chem ; 146: 107250, 2024 May.
Article in English | MEDLINE | ID: mdl-38460337

ABSTRACT

Multidrug-resistant tuberculosis continues to pose a health security risk and remains a public health emergency. Antimicrobial resistance result from treatment regimens that are both insufficient and incomplete leading to the emergence of multidrug-resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug-resistant tuberculosis. The impact of tuberculosis on the people suffering from HIV (Human immunodeficiency virus infection) have resulted in the increased research efforts in designing and discovery of novel antitubercular drugs that may result in decreasing treatment duration, minimising the need for multiple drug intake, minimising cytotoxicity and enhancing the mechanism of action of drug. While many drugs are available to treat tuberculosis, a precise and timely cure is still absent. Consequently, further investigation is needed to identify more recent molecular equivalents that have the potential to swiftly remove this disease. Isoniazid (INH), a treatment for tuberculosis (TB), targets the enzyme InhA (mycobacterium enoyl acyl carrier protein reductase), the Mycobacterium tuberculosis enoyl-acyl carrier protein (ACP) reductase, most common INH resistance is circumvented by InhA inhibitors that do not require KatG (catalase-peroxidase) activation, as a result, researchers are trying to work in the area of development of InhA inhibitors which could help in eradicating the era of tuberculosis from the world.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Acyl Carrier Protein , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Bacterial Proteins/metabolism , Mutation , Microbial Sensitivity Tests
6.
Phytochem Anal ; 35(3): 423-444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369684

ABSTRACT

INTRODUCTION: Alkaloids represent a wide class of naturally existing nitrogen-containing organic compounds having diverse biological activities. They are primary bioactive substances extracted from diverse plant parts. Due to their diverse biological activities, they are frequently used as medicines. The alkaloids have diverse pharmacological impacts on the human body; alkaloids are used for prevention, treatment, and reduction of discomfort associated with chronic illnesses. As most alkaloids exist in plants in complex form, combined with numerous other natural plant components, it is essential to recognize and characterize these molecules using different analytical techniques. OBJECTIVES: We aimed to review the literature on the methods and protocols for the analysis of naturally occurring alkaloids. METHODS: We carried out a literature survey using the PubMed, Scopus, and Google Scholar databases and other relevant published materials. The keywords used in the searches were "alkaloids," "analytical methods," "HPLC method," "GC method," "electrochemical methods," and "bioanalytical methods," in various combinations. RESULTS: In this article, several classes of alkaloids are presented, along with their biological activities. Moreover, it includes a thorough explanation of chromatographic techniques, hyphenated techniques, electrochemical techniques, and current trending analytical methods utilized for the isolation, identification, and comprehensive characterization of alkaloids. CONCLUSIONS: The various analytical techniques play an important role in the identification as well as the characterization of various alkaloids from plants, plasma samples, and urine samples. The hyphenation of various chromatographic techniques with mass spectrometry and NMR spectroscopy plays a crucial role in the characterization of unknown compounds.


Subject(s)
Alkaloids , Humans , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mass Spectrometry , Chromatography, High Pressure Liquid/methods
7.
Bioorg Chem ; 144: 107148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306828

ABSTRACT

Arylpiperazine clubbed various heterocyclic molecules present potential pharmacophoric structural features for the development of psychoactive drugs. There are various CNS active molecules possessing arylpiperazine moiety in their pharmacophore approved by USFDA. In the current study, we have explored the benzhydrylpiperazine moiety clubbed with various substituted oxadiazole moieties (AP1-12) for their monoamine oxidase (MAO) inhibition and antidepressant potential. Compounds AP3 and AP12 exhibited highly potent and selective MAO-A inhibition with IC50 values of 1.34 ± 0.93 µM and 1.13 ± 0.54 µM, respectively, and a selectivity index of 10- and 13-folds, respectively. Both the compounds displayed reversible binding character at the active site of MAO-A. In further in vivo evaluation, both the compounds AP3 and AP12 displayed potential antidepressant-like character in FST and TST studies via significantly reduced immobility time in comparison to non-treated animals. These compounds displayed no cytotoxicity in SH-SY5Y cell lines, which indicates that these compounds are safe for further evaluation. In silico studies reveal that synthesized compounds possess drug-likeness with minimal to no toxicity. In silico studies were conducted to understand the binding interactions and stability of compounds at the binding pocket of enzyme and observed that both the best compounds fit well at the active site of MAO-A lined by amino acid residues Tyr69, Asn181, Phe208, Ile335, Leu337, Phe352, and Tyr444 similar to standard MAO-A inhibitor clorgiline. The molecular dynamic studies demonstrated that AP3 and AP12 formed quite a stable complex at the active site of MAO-A and did not break under small abruption forces. The favourable binding interactions and appropriate ADMET properties present the benzhydrylpiperazine clubbed oxadiazole pharmacophoric features as a potential structural skeleton for further clinical evaluation and development of a new antidepressant drug molecule.


Subject(s)
Neuroblastoma , Pharmacophore , Animals , Humans , Antidepressive Agents/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Structure-Activity Relationship
8.
Curr Diabetes Rev ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38279734

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease caused by CD4+ and CD8+ that are activated via CD3+ cells and finally lead to the macrophages destroying the beta cells in the pancreas thereby causing diabetes. The anti-CD3 humanized monoclonal antibody was approved on 17th November 2022 by the United States Food Drug Administration (USFDA) with the name teplizumab and the brand name TZIELD. This is the only approved drug that treats type 1 diabetes (T1D) by delaying the onset of stage 3 in type 1 diabetes (T1D). This review outlines essential features of teplizumab including its brief introduction to its mechanism and other therapies for the treatment and various risks as well as the pharmacokinetics and pharmacodynamics of this disease and the clinical trial reports for the completed and ongoing therapies.

9.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38106226

ABSTRACT

Bone is a frequent site for breast cancer metastasis. Conditioning of the local tumor microenvironment (TME) through crosstalk between tumor cells and bone resident cells in the metastatic niche is a major driving force for bone colonization of breast cancer cells. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that breast cancer cell-secreted factors stimulate RANKL-induced OCL differentiation of BMDMs requiring the function of Myocardin-related transcription factor (MRTF) in tumor cells. This is partly attributed to the critical role of MRTF in maintaining the basal cellular expression of connective tissue growth factor (CTGF), a pro-osteoclastogenic matricellular factor known to promote bone metastasis in human breast cancer. Supporting these in vitro findings, bioinformatics analyses of multiple human breast cancer transcriptome datasets reveal a strong positive correlation between CTGF expression and MRTF gene signature further establishing the relevance of our findings in a human disease context. By Luminex analyses, we show that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extends beyond CTGF. These findings, taken together with demonstration of MRTF-dependence for bone colonization breast cancer cells in vivo, suggest that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL