Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Oncogene ; 43(34): 2578-2594, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048659

ABSTRACT

Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.


Subject(s)
Breast Neoplasms , Glycolysis , NAV1.5 Voltage-Gated Sodium Channel , Neoplasm Metastasis , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Humans , Animals , Female , Mice , Cell Line, Tumor , Hydrogen-Ion Concentration , Feedback, Physiological , Sodium/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness
2.
J Circadian Rhythms ; 22: 2, 2024.
Article in English | MEDLINE | ID: mdl-38617710

ABSTRACT

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

3.
J Circadian Rhythms ; 22: 1, 2024.
Article in English | MEDLINE | ID: mdl-38617711

ABSTRACT

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

4.
Physiol Rep ; 11(7): e15663, 2023 04.
Article in English | MEDLINE | ID: mdl-37017052

ABSTRACT

Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.


Subject(s)
Breast Neoplasms , Calcium Signaling , Humans , Female , Calcium Signaling/physiology , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism , Ion Channels/metabolism , Calcium/metabolism
5.
J Parkinsons Dis ; 11(4): 1805-1820, 2021.
Article in English | MEDLINE | ID: mdl-34250948

ABSTRACT

BACKGROUND: Inherited mutations in the LRRK2 protein are common causes of Parkinson's disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. OBJECTIVE: To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. METHODS: LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern ('sleep'), and courtship memory determined in aged flies. RESULTS: Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. CONCLUSION: We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson's disease.


Subject(s)
Dopaminergic Neurons , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , rab GTP-Binding Proteins , Animals , Dopaminergic Neurons/metabolism , Drosophila/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
6.
Front Pharmacol ; 11: 555047, 2020.
Article in English | MEDLINE | ID: mdl-33123007

ABSTRACT

Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.

7.
Redox Biol ; 37: 101712, 2020 10.
Article in English | MEDLINE | ID: mdl-32949970

ABSTRACT

Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved 'adaptive' role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.


Subject(s)
Antioxidants , JNK Mitogen-Activated Protein Kinases , Animals , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Neurons/metabolism , Oxidative Stress , Reactive Oxygen Species
8.
J Neuroinflammation ; 17(1): 87, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32192526

ABSTRACT

BACKGROUND: An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS: Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS: These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Intravital Microscopy/methods , Microglia , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Microenvironment/physiology
9.
Invert Neurosci ; 18(4): 15, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30406849

ABSTRACT

Short, cost-effective teaching activities are a useful way of providing an integrated view on biological processes. Here we describe a brief, hands-on workshop that allows pre-university students to explore their understanding of a neurological pathway from its chemical bases to phenotype. The workshop effectively introduces the students to data collection and analysis in an enjoyable way and at an appropriate level, determined by an end of session feedback survey. The design of the workshop can be adapted and scaled to generate diverse sessions such as university teaching practicals or summer school training workshops.


Subject(s)
Biochemistry/education , Drosophila melanogaster , Neurology/education , Animals , Humans , Students
10.
J Biol Rhythms ; 32(6): 583-592, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29172879

ABSTRACT

An organism's biological day is characterized by a pattern of anticipatory physiological and behavioral changes that are governed by circadian clocks to align with the 24-h cycling environment. Here, we used flash electroretinograms (ERGs) and steady-state visually evoked potentials (SSVEPs) to examine how visual responsiveness in wild-type Drosophila melanogaster and the circadian clock mutant ClkJrk varies over circadian time. We show that the ERG parameters of wild-type flies vary over the circadian day, with a higher luminance response during the subjective night. The SSVEP response that assesses contrast sensitivity also showed a time-of-day dependence, including 2 prominent peaks within a 24-h period and a maximal response at the end of the subjective day, indicating a tradeoff between luminance and contrast sensitivity. Moreover, the behaviorally arrhythmic ClkJrk mutants maintained a circadian profile in both luminance and contrast sensitivity, but unlike the wild-types, which show bimodal profiles in their visual response, ClkJrk flies show a weakening of the bimodal character, with visual responsiveness tending to peak once a day. We conclude that the ClkJrk mutation mainly affects 1 of 2 functionally coupled oscillators and that the visual system is partially separated from the locomotor circadian circuits that drive bouts of morning and evening activity. As light exposure is a major mechanism for entrainment, our work suggests that a detailed temporal analysis of electrophysiological responses is warranted to better identify the time window at which circadian rhythms are most receptive to light-induced phase shifting.


Subject(s)
CLOCK Proteins/genetics , Circadian Rhythm , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Evoked Potentials, Visual , Vision, Ocular , Animals , Electroretinography , Male
11.
Sci Rep ; 7: 43106, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220894

ABSTRACT

In the mammalian brain the ubiquitous tyrosine kinase, C-Src, undergoes splicing to insert short sequences in the SH3 domain to yield N1- and N2-Src. We and others have previously shown that the N-Srcs have altered substrate specificity and kinase activity compared to C-Src. However, the exact functions of the N-Srcs are unknown and it is likely that N-Src signalling events have been misattributed to C-Src because they cannot be distinguished by conventional Src inhibitors that target the kinase domain. By screening a peptide phage display library, we discovered a novel ligand (PDN1) that targets the unique SH3 domain of N1-Src and inhibits N1-Src in cells. In cultured neurons, PDN1 fused to a fluorescent protein inhibited neurite outgrowth, an effect that was mimicked by shRNA targeting the N1-Src microexon. PDN1 also inhibited L1-CAM-dependent neurite elongation in cerebellar granule neurons, a pathway previously shown to be disrupted in Src-/- mice. PDN1 therefore represents a novel tool for distinguishing the functions of N1-Src and C-Src in neurons and is a starting point for the development of a small molecule inhibitor of N1-Src.


Subject(s)
Neural Cell Adhesion Molecule L1/physiology , Neurites/metabolism , Signal Transduction , src-Family Kinases/metabolism , Alternative Splicing , Animals , CSK Tyrosine-Protein Kinase , Ligands , Mice , Neurites/physiology , src Homology Domains , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics
12.
Sci Rep ; 6: 22032, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915695

ABSTRACT

Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.


Subject(s)
Coculture Techniques , Microglia , Neurons , Time-Lapse Imaging/methods , Animals , Rats
13.
J Neurochem ; 137(4): 518-27, 2016 05.
Article in English | MEDLINE | ID: mdl-26865271

ABSTRACT

Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate ß-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Protein Precursor/metabolism , Nerve Tissue Proteins/metabolism , Tyrosine/metabolism , src-Family Kinases/metabolism , trans-Golgi Network/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Female , HeLa Cells , Humans , Male , Mice , Nerve Tissue Proteins/genetics , Phosphorylation/physiology , Protein Transport/physiology , Rats , Rats, Wistar , Tyrosine/genetics , src-Family Kinases/genetics , trans-Golgi Network/genetics
14.
J Biol Chem ; 289(49): 34341-8, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25271152

ABSTRACT

Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks/genetics , Drosophila Proteins/genetics , Gene Expression Regulation , Histone Deacetylases/genetics , RNA, Messenger/genetics , ARNTL Transcription Factors/metabolism , Acetylation , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Calcium/metabolism , Conserved Sequence , Cyclic AMP , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genes, Reporter , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Luciferases/genetics , Luciferases/metabolism , Mice , NIH 3T3 Cells , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
15.
J Neurochem ; 124(1): 26-35, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23083128

ABSTRACT

The Class IIa histone deacetylases (HDAC)4 and HDAC5 play a role in neuronal survival and behavioral adaptation in the CNS. Phosphorylation at 2/3 N-terminal sites promote their nuclear export. We investigated whether non-canonical signaling routes to Class IIa HDAC export exist because of their association with the co-repressor Silencing Mediator Of Retinoic And Thyroid Hormone Receptors (SMRT). We found that, while HDAC5 and HDAC4 mutants lacking their N-terminal phosphorylation sites (HDAC4(MUT), HDAC5(MUT)) are constitutively nuclear, co-expression with SMRT renders them exportable by signals that trigger SMRT export, such as synaptic activity, HDAC inhibition, and Brain Derived Neurotrophic Factor (BDNF) signaling. We found that SMRT's repression domain 3 (RD3) is critical for co-shuttling of HDAC5(MUT), consistent with the role for this domain in Class IIa HDAC association. In the context of BDNF signaling, we found that HDAC5(WT), which was more cytoplasmic than HDAC5(MUT), accumulated in the nucleus after BDNF treatment. However, co-expression of SMRT blocked BDNF-induced HDAC5(WT) import in a RD3-dependent manner. In effect, SMRT-mediated HDAC5(WT) export was opposing the BDNF-induced HDAC5 nuclear accumulation observed in SMRT's absence. Thus, SMRT's presence may render Class IIa HDACs exportable by a wider range of signals than those which simply promote direct phosphorylation.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Histone Deacetylases/metabolism , Nuclear Receptor Co-Repressor 2/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Green Fluorescent Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Hydroxamic Acids/pharmacology , Mutation/genetics , Neurons , Nuclear Receptor Co-Repressor 2/genetics , Phosphorylation/physiology , Protein Transport/drug effects , Protein Transport/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection
16.
Biochem Biophys Res Commun ; 425(2): 450-5, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22846568

ABSTRACT

Ca(2+) and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca(2+) and cAMP signals, including some that are Ca(2+)-responsive, some that are cAMP-responsive and some that detect coincident Ca(2+) and cAMP signals. Because Ca(2+) and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca(2+) are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca(2+) buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP(3) levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP(3) metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca(2+) stores. Our data indicate that Ca(2+) release from IP(3)-sensitive pools is required for cAMP-induced transcription in hippocampal neurons.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Hippocampus/metabolism , Inositol/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-fos/genetics , Transcription, Genetic , Active Transport, Cell Nucleus , Animals , Cell Nucleus , Cells, Cultured , Chelating Agents/pharmacology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Hippocampus/cytology , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/metabolism , Rats , Rats, Wistar , Serum Response Element/genetics , TOR Serine-Threonine Kinases/metabolism
17.
J Neurochem ; 112(4): 1065-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19968756

ABSTRACT

Expression of the nuclear orphan receptor gene Nur77 in neuronal cells is induced by activity-dependent increases in intracellular Ca2+ ions. Ca2+ responsiveness of the Nur77 gene has been attributed to two distinct DNA regulatory regions that recruit the transcription factors cAMP response element binding protein (CREB) and myocyte enhancer factor-2 (MEF2). Here we used dominant interfering and constitutively active mutants of CREB and MEF2 proteins to assess their relative contribution to depolarization-induced Nur77 expression in undifferentiated PC12 cells and hippocampal neurons. We show that while CREB is necessary for Ca2+-activated Nur77 expression MEF2 functions to modulate CREB-dependent Nur77 expression by acting as a repressor in quiescent cells.


Subject(s)
Gene Expression Regulation/physiology , Myogenic Regulatory Factors/metabolism , Neurons/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Calcium/metabolism , Cells, Cultured , Cyclosporine/pharmacology , Enzyme Inhibitors , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , MEF2 Transcription Factors , Mice , Mutation/physiology , Myogenic Regulatory Factors/genetics , NFATC Transcription Factors/metabolism , Neurons/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , PC12 Cells/drug effects , PC12 Cells/metabolism , Potassium Chloride/pharmacology , Promoter Regions, Genetic/genetics , Rats , Time Factors , Transfection/methods
18.
J Biol Chem ; 284(18): 12562-71, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19270309

ABSTRACT

In the mammalian hippocampus, changes in the expression of immediate early genes (IEGs) is thought to contribute to long term plastic changes in neurons brought about by learning tasks and high frequency stimulation of synapses. The phosphatase calcineurin has emerged as an important negative regulator of hippocampus-dependent learning and long term potentiation. Here we investigated the possibility that the constraining action of calcineurin on hippocampal plasticity is mediated in part by regulation of gene expression through negative control of transcription factors, such as cAMP-response element (CRE)-binding protein (CREB). We assessed the effect of calcineurin inhibitors on CREB activation by neuronal activity and show that calcineurin activity is in fact required for CREB-mediated gene expression. However, inhibition of calcineurin had disparate effects on the transcriptional induction of CREB-dependent IEGs. We find that the IEG c-fos is unaffected by suppression of calcineurin activity, the plasticity-related genes Egr1/Zif268 and Egr2/Krox-20 are up-regulated, and genes encoding the orphan nuclear hormone receptors Nor1 and Nur77 are down-regulated. We further show that the up-regulation of particular IEGs is probably due to the presence of serum response elements (SREs) in their promoters, because SRE-mediated gene expression is enhanced by calcineurin blockers. Moreover, expression of the c-fos gene, which is unaffected by calcineurin inhibitors, could be down-regulated by mutating the SRE. Conversely, SRE-mediated c-fos induction in the absence of a functional CRE was enhanced by calcineurin inhibitors. Our experiments thus implicate calcineurin as a negative regulator of SRE-dependent neuronal genes.


Subject(s)
Calcineurin/metabolism , Gene Expression Regulation/physiology , Hippocampus/metabolism , Nerve Tissue Proteins/biosynthesis , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , CREB-Binding Protein/metabolism , Calcineurin Inhibitors , Cells, Cultured , DNA-Binding Proteins/biosynthesis , Early Growth Response Protein 1/biosynthesis , Early Growth Response Protein 2/biosynthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/cytology , Neuronal Plasticity/drug effects , Neurons/cytology , Nuclear Receptor Subfamily 4, Group A, Member 1 , Proto-Oncogene Proteins c-fyn/biosynthesis , Rats , Rats, Wistar , Receptors, Steroid/biosynthesis , Serum Response Element/physiology , Transcription, Genetic/physiology
19.
J Neurochem ; 106(4): 1855-65, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18624906

ABSTRACT

This study investigates involvement of beta-catenin signalling in regulation of p-glycoprotein (p-gp) expression in endothelial cells derived from brain vasculature. Pharmacological interventions that enhance or that block beta-catenin signalling were applied to primary rat brain endothelial cells and to immortalized human brain endothelial cells, hCMEC/D3, nuclear translocation of beta-catenin being determined by immunocytochemistry and by western blot analysis to confirm effectiveness of the manipulations. Using the specific glycogen synthase kinase-3 (GSK-3) inhibitor 6-bromoindirubin-3'-oxime enhanced beta-catenin and increased p-gp expression including activating the MDR1 promoter. These increases were accompanied by increases in p-gp-mediated efflux capability as observed from alterations in intracellular fluorescent calcein accumulation detected by flow cytometry. Similar increases in p-gp expression were noted with other GSK-3 inhibitors, i.e. 1-azakenpaullone or LiCl. Application of Wnt agonist [2-amino-4-(3,4-(methylenedioxy) benzylamino)-6-(3-methoxyphenyl)pyrimidine] also enhanced beta-catenin and increased transcript and protein levels of p-gp. By contrast, down-regulating the pathway using Dickkopf-1 or quercetin decreased p-gp expression. Similar changes were observed with multidrug resistance protein 4 and breast cancer resistance protein, both known to be present at the blood-brain barrier. These results suggest that regulation of p-gp and other multidrug efflux transporters in brain vasculature can be influenced by beta-catenin signalling.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Brain/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation/physiology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Signal Transduction/physiology , beta Catenin/physiology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Brain/cytology , Brain/drug effects , Cell Line, Transformed , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/physiology , Endothelial Cells/cytology , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Indoles/pharmacology , Male , Oximes/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology , beta Catenin/genetics
20.
Neurosci Lett ; 427(3): 153-8, 2007 Nov 12.
Article in English | MEDLINE | ID: mdl-17945419

ABSTRACT

The myocyte enhancer factor-2 (MEF2) family of Ca(2+) -regulated transcription factors regulate neuronal development by controlling synapse formation and supporting the survival of newly formed neurons. MEF2 proteins could potentially also influence early aspects of neuronal differentiation such as neuronal fate specification and their subsequent morphological and functional maturation. We used immunocytochemistry to examine the expression of the isoform MEF2D during the differentiation of embryonic rat neural progenitor cells as a step towards evaluating the role of MEF2 factors in early events of neuronal differentiation. We show here that MEF2D is expressed in both proliferating neural precursor cells and in differentiated cells that acquire neuronal or glial phenotypes. However, in cells that adopt a neuronal phenotype, MEF2D expression in the nucleus increases progressively during the course of differentiation while decreasing in glial cells. Furthermore, in newly formed neurons the level of MEF2D expression correlates positively with the length of neurite projections.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental/physiology , Myogenic Regulatory Factors/metabolism , Neurites/physiology , Neurons/cytology , Animals , Cell Proliferation , Cells, Cultured , Embryo, Mammalian , Myogenic Regulatory Factors/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Rats , Rats, Wistar , Regression Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL