Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.503
Filter
1.
Ann Intern Med ; 177(8): JC92, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102724

ABSTRACT

SOURCE CITATION: Pradilla G, Ratcliff JJ, Hall AJ, et al; ENRICH trial investigators. Trial of early minimally invasive removal of intracerebral hemorrhage. N Engl J Med. 2024;390:1277-1289. 38598795.


Subject(s)
Cerebral Hemorrhage , Minimally Invasive Surgical Procedures , Humans , Cerebral Hemorrhage/surgery , Treatment Outcome
2.
Adv Sci (Weinh) ; : e2405354, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119889

ABSTRACT

Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.

3.
Huan Jing Ke Xue ; 45(8): 4419-4431, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168662

ABSTRACT

Based on the observation data of O3 concentration in Yinchuan in 2022, the monthly variation characteristics of O3 concentrations were analyzed. Further, based on the observation data of meteorological elements, conventional pollutants, and volatile organic compounds (VOCs) concentrations at an urban site in Yinchuan from May to July, the difference in meteorological elements and precursor concentrations between the polluted days and the non-polluted days were compared. Then, the O3 sensitivity and the VOCs sources were discussed using the Framework for 0-D Atmospheric Modeling (F0AM) and positive matrix factorization (PMF) model, respectively. The results showed that: ① The O3 pollution occurred from May to July in 2022, and the concentrations of O3-8h-90per were 156 µg·m-3, 170 µg·m-3, and 174 µg·m-3, respectively, with exceeding standard rates of 9.7%, 26.7%, and 29.0%, respectively. ② Compared with those on the non-polluted days, the hourly mean values of temperature, total solar radiation, and concentrations of various precursors on the O3-polluted days increased, including the volume concentrations of propane, isobutane, ethane, n-butane, and dichloromethane, which increased significantly by 33.1%, 29.1%, 25.0%, 22.7%, and 21.3%, respectively. The results showed that the combined increase in pollutant emissions and adverse meteorological conditions contributed to the formation of O3. ③ From May to July 2022, the top five VOCs species in terms of ozone formation potential (OFP) value on whole, non-polluted, and polluted days were the same. They were acetaldehyde, m/p-xylene, ethylene, isoprene, and toluene, mainly from solvent use sources, natural sources, and chemical industry emissions. ④ The local O3 production was mostly controlled by VOCs, and the relative incremental reactivity (RIR) results revealed that O3 production showed strong positive sensitivity to alkene and aromatic hydrocarbon but showed negative sensitivity to NOx on both polluted and non-polluted days. The relative contributions of active species such as acetone, ethylene, and isobutane to O3 production were high, and the implementation of an emission reduction scheme with the ratio of VOCs to NOx emission reduction much greater than 1 could effectively reduce the local O3 concentration. ⑤ The main sources of atmospheric VOCs in Yinchuan were motor vehicle emission sources (32.3%), process sources (20.7%), combustion sources (19.2%), solvent use sources (12.7%), gasoline volatile sources (9.1%), and natural sources (6%), and the contribution rate of motor vehicle emission sources on polluted days increased by 4.6% compared with that on non-polluted days, indicating that the motor vehicle emission source was an important object of summer VOCs control in Yinchuan.

4.
NPJ Precis Oncol ; 8(1): 173, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103596

ABSTRACT

Tumor spread through air spaces (STAS) is a distinctive metastatic pattern affecting prognosis in lung adenocarcinoma (LUAD) patients. Several challenges are associated with STAS detection, including misdetection, low interobserver agreement, and lack of quantitative analysis. In this research, a total of 489 digital whole slide images (WSIs) were collected. The deep learning-based STAS detection model, named STASNet, was constructed to calculate semi-quantitative parameters associated with STAS density and distance. STASNet demonstrated an accuracy of 0.93 for STAS detection at the tiles level and had an AUC of 0.72-0.78 for determining the STAS status at the WSI level. Among the semi-quantitative parameters, T10S, combined with the spatial location information, significantly stratified stage I LUAD patients on disease-free survival. Additionally, STASNet was deployed into a real-time pathological diagnostic environment, which boosted the STAS detection rate and led to the identification of three easily misidentified types of occult STAS.

5.
Front Pharmacol ; 15: 1415224, 2024.
Article in English | MEDLINE | ID: mdl-39175546

ABSTRACT

Aims: Multiple myeloma (MM) remains a challenging condition to cure, with persistent drug resistance negating the benefits of treatment advancements. The unraveling complexities in programmed cell death (PCD), inclusive of apoptosis, autophagy, and ferroptosis, have highlighted novel therapeutic avenues. Our study focuses on deciphering how adapalene (ADA), a small molecule compound, accelerates the demise of MM cells via targeting their compensatory survival mechanisms. Methods: To assess the impact of ADA on MM, we employed flow cytometry and trypan blue exclusion assays to determine cell viabilities across MM cell lines and primary patient samples post-treatment. To delineate ADA's therapeutic targets and mechanisms, we conducted RNA sequencing (RNA-seq), gene set enrichment analysis (GSEA), molecular docking, and molecular dynamics simulations. We further designed pre-clinical trials emphasizing MM, exploring the efficacy of ADA as a standalone and in combination with bortezomib (BTZ). Results: ADA elicited a dose-responsive induction of MM cell death. Building upon ADA's anti-MM capabilities as a single agent, we proposed that ADA-BTZ co-treatment might amplify this lethality. Indeed, ADA and BTZ together greatly potentiated MM cell death. ADA proved beneficial in restoring BTZ susceptibility in BTZ-resistant relapsed or refractory MM (RRMM) patient cells. Molecular simulations highlighted ADA's high affinity (-9.17 kcal/mol) for CD138, with MM-GBSA revealing a binding free energy of -27.39 kcal/mol. Detailed interaction analyses indicated hydrogen-bonding of ADA with CD138 at the Asp35 and Gln34 residues. Additionally, ADA emerged as a versatile instigator of both ferroptosis and apoptosis in MM cells. Furthermore, ADA disrupted activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway triggered by BTZ, fostering cell death in BTZ-resistant MM subsets. Conclusion: ADA demonstrates a comprehensive capability to orchestrate MM cell death, exerting pronounced anti-MM activity while disrupting NF-κB-related drug resistance. ADA sensitization of MM cells to BTZ unravels its potential as a novel therapeutic drug for MM management.

6.
ACS Nano ; 18(33): 22122-22138, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39119697

ABSTRACT

Binding of anti-PEG antibodies to poly(ethylene glycol) (PEG) on the surface of PEGylated liposomal doxorubicin (PLD) in vitro and in rats can activate complement and cause the rapid release of doxorubicin from the liposome interior. Here, we find that irinotecan liposomes (IL) and L-PLD, which have 16-fold lower levels of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000 in their liposome membrane as compared to PLD, generate less complement activation but remain sensitive to destabilization and drug release by anti-PEG antibodies. Complement activation and liposome destabilization correlated with the theoretically estimated number of antibody molecules bound per liposome. Drug release from liposomes proceeded through the alternative complement pathway but was accelerated by the classical complement pathway. In contrast to PLD destabilization by anti-PEG immunoglobulin G (IgG), which proceeded by the insertion of membrane attack complexes in the lipid bilayer of otherwise intact PLD, anti-PEG IgG promoted the fusion of L-PLD, and IL to form unilamellar and oligo-vesicular liposomes. Anti-PEG immunoglobulin M (IgM) induced drug release from all liposomes (PLD, L-PLD, and IL) via the formation of unilamellar and oligo-vesicular liposomes. Anti-PEG IgG destabilized both PLD and L-PLD in rats, indicating that the reduction of PEG levels on liposomes is not an effective approach to prevent liposome destabilization by anti-PEG antibodies.


Subject(s)
Doxorubicin , Liposomes , Polyethylene Glycols , Polyethylene Glycols/chemistry , Liposomes/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Rats , Antibodies/chemistry , Antibodies/immunology , Complement Activation/drug effects , Phosphatidylethanolamines/chemistry , Drug Liberation
7.
Food Funct ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056112

ABSTRACT

Background: A high-fat diet (HFD) is generally associated with an increased risk of mental disorders that constitute a sizeable worldwide health. A HFD results in the gut microbiota-brain axis being altered and linked to mental disorders. Hypocretin-1, which can promote appetite, has been previously confirmed to be associated with depression. However, no exact relationship has been found for hypocretin between depression and HFDs. Methods: Adult male SD rats were randomly assigned to either a HFD or a normal diet for eight weeks, followed by behavioral tests and plasma biochemical analyses. Then, we investigated the protein and mRNA levels of inflammation-related factors in the hippocampus. We also observed morphological changes in brain microglia and lipid accumulation. Additionally, metagenomic and metabolomic analyses of gut microbiomes were performed. 3T3-L1 cells were utilized in vitro to investigate the impact of hypocretin receptor 1 antagonists (SB334867) on lipid accumulation. To consider the connection between the brain and adipose tissue, we used a conditioned medium (CM) treated with 3T3-L1 cells to observe the activation and phagocytosis of BV2 cells. Following a 12-week period of feeding a HFD to C57BL/6 mice, a three-week intervention period was initiated during which the administration of SB334867 was observed. This was followed by a series of assessments, including monitoring of body weight changes and emotional problems, as well as attention to plasma biochemical levels and microglial cell phenotypes in the brain. Results: The HFD rats displayed anxiety and depressive-like behaviors. HFD rats exhibited increased plasma HDL, LDL, and TC levels. A HFD also causes an increase in hypocretin-1 and hypocretin-2 in the hypothalamus. Metagenomics and metabolomics revealed that the HFD caused an increase in the relative abundance of associated inflammatory bacteria and decreased the abundance of anti-inflammatory and bile acid metabolites. Compared with the CTR group, hippocampal microglia in the HFD group were significantly activated and accompanied by lipid deposition. At the same time, protein and mRNA expression levels of inflammation-related factors were increased. We found that SB334867 could significantly reduce lipid accumulation in 3T3-L1 cells after differentiation. The expression of inflammatory factors decreased in the SB334867 group. The administration of SB334867 was found to reverse the adverse effects of the HFD on body weight, depressive-like behaviour and anxiety-like mood. Furthermore, this treatment was associated with improvements in plasma biochemical levels and a reduction in the number of microglia in the brain. Conclusions: In summary, our results demonstrated that a HFD induced anxiety and depressive-like behaviors, which may be linked to the increased hypocretin-1 level and lipid accumulation. Supplementation with SB334867 improved the above. These observations highlight the possibility of hypocretin-1 inducing the risk of HFD-associated emotional dysfunctions.

8.
Biomedicines ; 12(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062144

ABSTRACT

Tuberculosis (TB) continues to be a major global health burden and kills over a million people annually. New immunization strategies are required for the development of an efficacious TB vaccine that can potentially induce sterilizing immunity. In this study, we first confirmed that a live vaccine strain of Mycobacterium smegmatis, previously designated as IKEPLUS, conferred a higher survival benefit than the Bacillus Calmette-Guerin (BCG) in a murine model of intravenous Mycobacterium tuberculosis (Mtb) infection. We have shown that there was a significant increase in the expression of the Rv0282 gene, which is encoded in the esx-3 locus, which played an important role in iron uptake when IKEPLUS was grown in both low zinc and iron-containing Sauton medium. We then confirmed using in vitro assays of biofilm formation that zinc plays a vital role in the growth and formation of M. smegmatis biofilms. IKEPLUS grown in low zinc media led to the better protection of mice after intravenous challenge with a very high dosage of Mtb. We also showed that various variants of IKEPLUS induced apoptotic cell-death of infected macrophages at a higher rate than wild-type M. smegmatis. We next attempted to determine if zinc containing ribosomal proteins such as rpmb2 could contribute to protective efficacy against Mtb infection. Since BCG has an established role in anti-mycobacterial efficacy, we boosted BCG vaccinated mice with rmpb2, but this did not lead to an increment in the protection mediated by BCG.

9.
Ann Vasc Surg ; 108: 47-56, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960090

ABSTRACT

BACKGROUND: The objective of this study was to determine whether thoracic endovascular aortic repair (TEVAR) timing is more beneficial in the acute phase (first 14 days) than in the subacute phase (14-90 days) for the administration of acute Stanford type B aortic dissection (TBAD). METHODS: A comprehensive literature search was conducted in databases (EMBASE, PubMed and Cochrane Library) until December 2023 to identify studies reporting the results of TEVAR used for patients with acute TBAD. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated utilizing either the random-effects model or the fixed-effects model. RESULTS: A total of 25 studies involving 4,827 individuals with TBAD (including 1,609 with subacute TBAD) met our selection criteria. Early results revealed a lower incidence of Ia endoleaks (OR, 1.55; 95% CI, 1.03-2.33; P = 0.04) and aortic ruptures (OR, 2.89; 95% CI, 0.98-8.50; P = 0.05) in subacute TBAD. Apart from these findings, there was little difference in other incidents between the 2 groups. Regarding late outcomes, we observed significantly higher rates of retrograde dissection (OR, 2.12; 95% CI, 1.04-4.34; P = 0.04), distal stent-induced new entry (OR, 2.39; 95% CI, 1.24-4.61; P = 0.009), and reintervention (OR, 1.45; 95% CI, 0.05-1.99; P = 0.02) in acute TBAD than in subacute TBAD, whereas no significant differences were found for other outcomes between the 2 groups. Also, TEVAR appeared to yield comparable results for false lumen thrombosis and true lumen regression in both groups. CONCLUSIONS: Subacute TBAD repair with TEVAR demonstrates a more effective reduction in adverse event rates compared to immediate treatment in the acute phase.

10.
World J Gastrointest Surg ; 16(6): 1592-1600, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983330

ABSTRACT

BACKGROUND: Malignant obstructive jaundice (MOJ) is a condition characterized by varying degrees of bile duct stenosis and obstruction, accompanied by the progressive development of malignant tumors, leading to high morbidity and mortality rates. Currently, the two most commonly employed methods for its management are percutaneous transhepatic bile duct drainage (PTBD) and endoscopic ultrasound-guided biliary drainage (EUS-BD). While both methods have demonstrated favorable outcomes, additional research needs to be performed to determine their relative efficacy. AIM: To compare the therapeutic effectiveness of EUS-BD and PTBD in treating MOJ. METHODS: This retrospective analysis, conducted between September 2015 and April 2023 at The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), involved 68 patients with MOJ. The patients were divided into two groups on the basis of surgical procedure received: EUS-BD subgroup (n = 33) and PTBD subgroup (n = 35). Variables such as general data, preoperative and postoperative indices, blood routine, liver function indices, myocardial function indices, operative success rate, clinical effectiveness, and complication rate were analyzed and compared between the subgroups. RESULTS: In the EUS-BD subgroup, hospital stay duration, bile drainage volume, effective catheter time, and clinical effectiveness rate were superior to those in the PTBD subgroup, although the differences were not statistically significant (P > 0.05). The puncture time for the EUS-BD subgroup was shorter than that for the PTBD subgroup (P < 0.05). Postoperative blood routine, liver function index, and myocardial function index in the EUS-BD subgroup were significantly lower than those in the PTBD subgroup (P < 0.05). Additionally, the complication rate in the EUS-BD subgroup was lower than in the PTBD subgroup (P < 0.05). CONCLUSION: EUS-BD may reduce the number of punctures, improve liver and myocardial functions, alleviate traumatic stress, and decrease complication rates in MOJ treatment.

11.
Br J Haematol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960449

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

12.
J Ginseng Res ; 48(4): 395-404, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036738

ABSTRACT

Background: Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood. Methods: Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV-Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored. Results: An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated. Conclusion: Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.

13.
Front Cell Infect Microbiol ; 14: 1421128, 2024.
Article in English | MEDLINE | ID: mdl-39055981

ABSTRACT

Background: Some observational studies and clinical experiments suggest a close association between gut microbiota and metabolic diseases. However, the causal effects of gut microbiota on adrenal diseases, including Adrenocortical insufficiency, Cushing syndrome, and Hyperaldosteronism, remain unclear. Methods: This study conducted a two-sample Mendelian randomization analysis using summary statistics data of gut microbiota from a large-scale genome-wide association study conducted by the MiBioGen Consortium. Summary statistics data for the three adrenal diseases were obtained from the FinnGen study. The study employed Inverse variance weighting, MR-Egger, and MR-PRESSO methods to assess the causal relationship between gut microbiota and these three adrenal diseases. Additionally, a reverse Mendelian randomization analysis was performed for bacteria found to have a causal relationship with these three adrenal diseases in the forward Mendelian randomization analysis. Cochran's Q statistic was used to test for heterogeneity of instrumental variables. Results: The IVW test results demonstrate that class Deltaproteobacteria, Family Desulfovibrionaceae, and Order Desulfovibrionales exhibit protective effects against adrenocortical insufficiency. Conversely, Family Porphyromonadaceae, Genus Lachnoclostridium, and Order MollicutesRF9 are associated with an increased risk of adrenocortical insufficiency. Additionally, Family Acidaminococcaceae confers a certain level of protection against Cushing syndrome. In contrast, Class Methanobacteria, Family Lactobacillaceae, Family Methanobacteriaceae, Genus. Lactobacillus and Order Methanobacteriales are protective against Hyperaldosteronism. Conversely, Genus Parasutterella, Genus Peptococcus, and Genus Veillonella are identified as risk factors for Hyperaldosteronism. Conclusions: This two-sample Mendelian randomization analysis revealed a causal relationship between microbial taxa such as Deltaproteobacteria and Desulfovibrionaceae and Adrenocortical insufficiency, Cushing syndrome, and Hyperaldosteronism. These findings offer new avenues for comprehending the development of adrenal diseases mediated by gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/genetics , Adrenal Gland Diseases/microbiology , Adrenal Gland Diseases/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Hyperaldosteronism/genetics , Hyperaldosteronism/microbiology , Cushing Syndrome/microbiology , Cushing Syndrome/genetics , Adrenal Insufficiency/microbiology
15.
Diabetes Obes Metab ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021342

ABSTRACT

AIM: In recent years, proteomics research has surged, with numerous observational studies identifying associations between plasma proteins and type 2 diabetes. However, research specifically focusing on the ratios of plasma proteins in type 2 diabetes remains relatively scarce. METHODS: This study primarily employed a two-sample, two-step Mendelian randomization (MR) approach, leveraging genetic data from several large, publicly accessible genome-wide association studies, wherein single nucleotide polymorphisms served as proxies for exposures and diseases. Within this framework, we applied two-sample MR to assess the associations between the 2821 plasma protein-to-protein ratios and type 2 diabetes along with its complications and utilized reverse MR to confirm the unidirectionality of these causal relationships. In addition, we employed two-step MR to investigate the potential mediating role of body mass index in these associations. To augment the robustness of our findings, we systematically implemented a series of sensitivity analyses. RESULTS: The results gleaned from the inverse-variance weighted method elucidated that a cumulative sum of 23 protein-to-protein ratios bore a causal nexus with type 2 diabetes across both sample cohorts. With each incremental elevation of 1 standard deviation in the genetically anticipated protein-to-protein ratio, the susceptibility to type 2 diabetes oscillated from 0.93 (95% confidence interval: 0.87, 1.00) for the CNTN3/NCSS1 protein level ratio to 1.13 (1.06, 1.22) for the DBNL/NCK2 protein level ratio. Moreover, a tally of eight protein-to-protein ratios correlated with a minimum of one complication linked to type 2 diabetes. Diverse sensitivity analyses corroborated the robustness of these observations. CONCLUSIONS: The outcomes of our investigation unveiled correlations between 23 plasma protein-to-protein ratios and type 2 diabetes, with eight of these ratios entwined with complications of type 2 diabetes. These discoveries offer novel perspectives on the diagnosis and management of type 2 diabetes and its associated complications.

16.
J Viral Hepat ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046172

ABSTRACT

Recent studies suggested that successful clearance of chronic Hepatitis C Virus (HCV) by using direct-acting antiviral (DAA) agents could improve glycemic control in patients with diabetes; however, some studies failed to identify this benefit. We conducted a systematic review and meta-analysis to assess the impact of sustained virologic response (SVR) after treatment with DAA agents on glycemic control. Embase, Scopus and PubMed were searched through March 26th, 2023, for all studies evaluating whether eradication of HCV infection with DAAs is associated with an impact on glycemic control. Only studies with data on glycemic control, including haemoglobin A1c (HbA1c), fasting glucose, or Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), at least 12-week post-SVR were included. Sixteen studies met our eligibility criteria and were included in qualitative analysis. The mean HbA1c was 8.05% (95% CI: 7.79%-8.31%) before treatment and 7.19% (95% CI: 6.98%-7.39%) after treatment. There was a significant mean absolute reduction in HbA1c of 0.72% (95% CI: 0.52%-0.93%) with high heterogeneity between studies (I2 = 91.7%). The reduction in HbA1c remained significant in the subgroup analysis at 3 months follow up post SVR [0.74% (95% CI: 0.57%-0.91%)] and at least 6 months follow up [0.66% (95% CI: 0.23%-1.10%)]. We found a significant reduction in HbA1C after SVR in patients with type 2 diabetes mellitus, reflecting better glycemic control with HCV eradication. This data highlights an important extrahepatic benefit of HCV eradication.

17.
BMC Biol ; 22(1): 146, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956599

ABSTRACT

BACKGROUND: Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS: Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS: Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.


Subject(s)
Autophagy , Folic Acid , Hepatocytes , Homeostasis , Lipid Metabolism , Zebrafish , Autophagy/physiology , Folic Acid/metabolism , Humans , Hepatocytes/metabolism , Animals , Folic Acid Deficiency/metabolism
18.
Cell Death Dis ; 15(7): 542, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079960

ABSTRACT

Breast cancer remains a significant global health challenge, and its mechanisms of progression and metastasis are still not fully understood. In this study, analysis of TCGA and GEO datasets revealed a significant increase in CCT2 expression in breast cancer tissues, which was associated with poor prognosis in breast cancer patients. Functional analysis revealed that CCT2 promoted breast cancer growth and metastasis through activation of the JAK2/STAT3 signaling pathway. Additionally, the E3 ubiquitin ligase Trim21 facilitated CCT2 ubiquitination and degradation, significantly reversing the protumor effects of CCT2. Most interestingly, we discovered that exosomal CCT2 derived from breast cancer cells suppressed the activation and proinflammatory cytokine secretion of CD4+ T cell. Mechanistically, exosomal CCT2 constrained Ca2+-NFAT1 signaling, thereby reducing CD40L expression on CD4+ T cell. These findings highlight CCT2 upregulation as a potential driver of breast cancer progression and immune evasion. Our study provides new insights into the molecular mechanisms underlying breast cancer progression, suggesting that CCT2 is a promising therapeutic target and prognostic predictor for breast cancer.


Subject(s)
Breast Neoplasms , CD4-Positive T-Lymphocytes , Disease Progression , Ribonucleoproteins , Ubiquitination , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Animals , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Mice , Cell Line, Tumor , Signal Transduction , Lymphocyte Activation , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation , Mice, Inbred BALB C , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Prognosis
19.
Water Res ; 261: 121985, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38968734

ABSTRACT

This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.


Subject(s)
Metformin , Neural Networks, Computer , Porosity , Water Pollutants, Chemical/chemistry
20.
Adv Sci (Weinh) ; : e2404628, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981022

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.

SELECTION OF CITATIONS
SEARCH DETAIL