Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Angew Chem Int Ed Engl ; : e202415681, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324407

ABSTRACT

The rapid oxidation of Sn2+ in tin-based perovskite solar cells (TPSCs) restricts their efficiency and stability have been main bottleneck towards further development. This study developed a novel strategy which utilizes thiosulfate ions (S2O32-) in the precursor solution to enable a dual-stage reduction process. In the solution stage, thiosulfate acted as an efficacious reducing agent to reduce Sn4+ to Sn2+, meanwhile, its oxidation products were able to reduce I2 to I- during the film stage. This dual reduction ability effectively inhibited the oxidation of Sn2+ and passivated defects, further promising an excellent stability of the perovskite devices. As a result, thiosulfate-incorporated devices achieved a high efficiency of 14.78% with open-circuit voltage reaching 0.96 V. The stability of the optimized devices achieved a remarkable improvement, maintaining 90% of their initial efficiencies after 628 hours at maximum-power-point (MPP). The findings provid research insights and experimental data support for the sustained dynamic reduction in TPSCs.

2.
Angew Chem Int Ed Engl ; 63(39): e202406140, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38981859

ABSTRACT

Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6 % (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.

3.
Angew Chem Int Ed Engl ; : e202412915, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083335

ABSTRACT

The device performance of deep-blue perovskite light-emitting diodes (PeLEDs) is primarily constrained by low external quantum efficiency (EQE) especially poor operational stability. Herein, we develop a facile strategy to improve deep-blue emission through rational interface engineering. We innovatively reported the novel electron transport material, 4,6-Tris(4-(diphenylphosphoryl)phenyl)-1,3,5-triazine (P-POT2T), and utilized a sequential wet-dry deposition method to form homogenic gradient interface between electron transport layer (ETL) and perovskite surface. Unlike previous reports that achieved carrier injection balance by inserting new interlayers, our strategy not only passivated uncoordinated Pb in the perovskite via P=O functional groups but also reduced interfacial carrier recombination without introducing new interfaces. Additionally, this strategy enhanced the interface contact between the perovskite and ETL, significantly boosting device stability. Consequently, the fabricated deep-blue PeLEDs delivered an external quantum efficiency (EQE) exceeding 5% (@ 460 nm) with an exceptional halftime extended to 31.3 minutes. This straightforward approach offers a new strategy to realize highly efficient especially stable PeLEDs.

6.
Adv Mater ; 36(31): e2403038, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38724029

ABSTRACT

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

7.
Angew Chem Int Ed Engl ; 63(22): e202403739, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38565430

ABSTRACT

Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.

8.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38454951

ABSTRACT

Mate recognition in C. elegans involves the integration of multiple sensory cues to facilitate the identification of suitable mates for reproductive behaviors. The cuticle, serving as the protective outer layer enveloping the entire body, has been implicated in eliciting contact responses essential for contact-mediated mate recognition in males. However, the specific constituents of cuticular cues have yet to be identified. In this study, we investigate the potential modulatory role of adult-specific collagen COL-19 in contact-mediated mate recognition. Our study shows that the expression of COL-19 ::GFP is adult-specific and not sexually dimorphic. Knockdown of col-19 via RNAi does not affect mate attractiveness of hermaphrodites in male retention assay, as corroborated by generating two independent col-19 putative null mutants via CRISPR/Cas9. These findings suggest that col-19 does not contribute to contact-mediated mate recognition, thereby advancing our mechanistic understanding of the intricate social interactions between sexes in C. elegans .

9.
Adv Mater ; 36(21): e2313154, 2024 May.
Article in English | MEDLINE | ID: mdl-38351390

ABSTRACT

Oxygen is difficult to be physically removed. Oxygen will be excited by light to form free radicals which further attack the lattice of perovskite. The stabilization of α-FAPbI3 against δ-FAPbI3 is the key to optimize perovskite solar cells. Herein, the simple molecule, benzaldehyde (BAH) is adopted. The photochemical shield will be established in perovskite layer. Moreover, heterogeneous nucleation induced by BAH enhances the crystallization of α-FAPbI3. Consequently, the stability of device is improved significantly. The target device maintains 95% of original power conversion efficiency after 1500 h under air conditions and light-emitting diode light. The power conversion efficiency increases from 23.21% of pristine device to 24.82% of target device.

10.
ACS Nano ; 18(8): 6513-6522, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345358

ABSTRACT

The performance of blue perovskite light-emitting diodes (PeLEDs) lags behind the green and red counterparts owing to high trap density and undesirable red shift of the electroluminescence spectrum under operation conditions. Organic molecular additives were employed as passivators in previous reports. However, most commonly have limited functions, making it challenging to effectively address both efficiency and stability issues simultaneously. Herein, we reported an innovatively dynamic in situ hydrolysis strategy to modulate quasi-2D sky-blue perovskites by the multifunctional passivator phenyl dichlorophosphate that not only passivated the defects but also underwent in situ hydrolysis reaction to stabilize the emission. Moreover, hydrolysis products were beneficial for low-dimensional phase manipulation. Eventually, we obtained high-performance sky-blue PeLEDs with a maximum external quantum efficiency (EQE) of 16.32% and an exceptional luminance of 5740 cd m-2. More importantly, the emission peak of devices located at 485 nm remained stable under different biases. Our work signified the significant advancement toward realizing future applications of PeLEDs.

11.
Angew Chem Int Ed Engl ; 63(7): e202318133, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38168100

ABSTRACT

Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.

12.
Natl Sci Rev ; 11(2): nwad305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213530

ABSTRACT

The interaction between sites A, B and X with passivation molecules is restricted when the conventional passivation strategy is applied in perovskite (ABX3) photovoltaics. Fortunately, the revolving A-site presents an opportunity to strengthen this interaction by utilizing an external field. Herein, we propose a novel approach to achieving an ordered magnetic dipole moment, which is regulated by a magnetic field via the coupling effect between the chiral passivation molecule and the A-site (formamidine ion) in perovskites. This strategy can increase the molecular interaction energy by approximately four times and ensure a well-ordered molecular arrangement. The quality of the deposited perovskite film is significantly optimized with inhibited nonradiative recombination. It manages to reduce the open-circuit voltage loss of photovoltaic devices to 360 mV and increase the power conversion efficiency to 25.22%. This finding provides a new insight into the exploration of A-sites in perovskites and offers a novel route to improving the device performance of perovskite photovoltaics.

14.
Proc Natl Acad Sci U S A ; 120(51): e2221680120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38096407

ABSTRACT

Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Sensory Receptor Cells/metabolism
15.
Sci Rep ; 13(1): 22460, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38105313

ABSTRACT

The body fluid status in acute stroke is a crucial determinant in early stroke recovery but a real-time method to monitor body fluid status is not available. This study aims to evaluate the relationship between salivary conductivity and body fluid status during the period of intravenous fluid hydration. Between June 2020 to August 2022, patients presenting with clinical signs of stroke at the emergency department were enrolled. Salivary conductivities were measured before and 3 h after intravenous hydration. Patients were considered responsive if their salivary conductivities at 3 h decreased by more than 20% compared to their baseline values. Stroke severity was assessed using the National Institutes of Health Stroke Scale, and early neurological improvement was defined as a decrease of ≥ 2 points within 72 h of admission. Among 108 recruited patients, there were 35 of stroke mimics, 6 of transient ischemic attack and 67 of acute ischemic stroke. Salivary conductivity was significantly decreased after hydration in all patients (9008 versus 8118 µs/cm, p = 0.030). Among patients with acute ischemic stroke, the responsive group, showed a higher rate of early neurological improvement within 3 days compared to the non-responsive group (37% versus 10%, p = 0.009). In a multivariate logistic regression model, a decrease in salivary conductivity of 20% or more was found to be an independent factor associated with early neurological improvement (odds ratio 5.42, 95% confidence interval 1.31-22.5, p = 0.020). Real-time salivary conductivity might be a potential indicator of hydration status of the patient with acute ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Attack, Transient , Ischemic Stroke , Stroke , United States , Humans , Brain Ischemia/diagnosis , Brain Ischemia/therapy , Brain Ischemia/complications , Ischemic Stroke/complications , Clinical Relevance , Stroke/diagnosis , Stroke/therapy , Stroke/complications , Ischemic Attack, Transient/complications , Treatment Outcome
16.
Curr Biol ; 33(17): 3585-3596.e5, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37541249

ABSTRACT

Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.


Subject(s)
Caenorhabditis elegans , Sexual Behavior, Animal , Animals , Male , Caenorhabditis elegans/physiology , Sexual Behavior, Animal/physiology , Sensation , Reproduction , Recognition, Psychology
17.
Biomedicines ; 11(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37371603

ABSTRACT

Several studies have indicated that lipoproteins might contribute to the pathogenesis of age-related macular degeneration (AMD). In this population-based retrospective cohort study, patients with hyperlipidemia were divided into two groups (study groups I and II) based on whether or not they were receiving antihyperlipidemic agents. The comparison group included patients without hyperlipidemia who were randomly selected and matched with study group II patients. A Cox proportional hazard model was used to evaluate the risk of AMD among the groups. Patients with hyperlipidemia receiving antihyperlipidemic agents (study group I, n = 15,482) had a significantly increased AMD risk (adjusted hazard ratio (HR) = 1.23, 95% confidence interval (CI) = 1.04-1.45) compared to those not receiving antihyperlipidemic agents (study group II, n = 15,482). However, with an increase in cumulative exposure, a reduced risk of AMD was observed in patients using a defined daily dose of more than 721, with an adjusted HR of 0.34 (95% CI = 0.22-0.53, p < 0.001). Additionally, the adjusted HR of AMD for study group II was 1.40 (95% CI = 1.20-1.63, p < 0.001) relative to the comparison group (n = 61,928). In conclusion, the study results indicated that patients with hyperlipidemia have a higher AMD risk than patients without hyperlipidemia. Furthermore, patients with hyperlipidemia who received antihyperlipidemic agents had a significantly increased AMD risk. However, a dose-dependent reduction in the risk of AMD was observed in patients with hyperlipidemia using statins or/and fibrates.

18.
Adv Mater ; 35(31): e2210106, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37286198

ABSTRACT

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy-to-adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non-radiative carrier recombination under low light illumination restrains the application of perovskite-based IPVs (PIPVs). Herein, polar molecules of amino naphthalene sulfonates are employed to functionalize the TiO2 substrate, anchoring the CsPbI3 perovskite crystal grains with a strong ion-dipole interaction between the molecule-level polar interlayer and the ionic perovskite film. The resulting high-quality CsPbI3 films with the merit of defect-immunity and large shunt resistance under low light conditions enable the corresponding PIPVs with an indoor power conversion efficiency of up to 41.2% (Pin : 334.11 µW cm-2 , Pout : 137.66 µW cm-2 ) under illumination from a commonly used indoor light-emitting diode light source (2956 K, 1062 lux). Furthermore, the device also achieves efficiencies of 29.45% (Pout : 9.80 µW cm-2 ) and 32.54% (Pout : 54.34 µW cm-2 ) at 106 (Pin : 33.84 µW cm-2 ) and 522 lux (Pin : 168.21 µW cm-2 ), respectively.

19.
Proc Natl Acad Sci U S A ; 120(17): e2210735120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37075074

ABSTRACT

The invasion of nerves by cancer cells, or perineural invasion (PNI), is potentiated by the nerve microenvironment and is associated with adverse clinical outcomes. However, the cancer cell characteristics that enable PNI are poorly defined. Here, we generated cell lines enriched for a rapid neuroinvasive phenotype by serially passaging pancreatic cancer cells in a murine sciatic nerve model of PNI. Cancer cells isolated from the leading edge of nerve invasion showed a progressively increasing nerve invasion velocity with higher passage number. Transcriptome analysis revealed an upregulation of proteins involving the plasma membrane, cell leading edge, and cell movement in the leading neuroinvasive cells. Leading cells progressively became round and blebbed, lost focal adhesions and filipodia, and transitioned from a mesenchymal to amoeboid phenotype. Leading cells acquired an increased ability to migrate through microchannel constrictions and associated more with dorsal root ganglia than nonleading cells. ROCK inhibition reverted leading cells from an amoeboid to mesenchymal phenotype, reduced migration through microchannel constrictions, reduced neurite association, and reduced PNI in a murine sciatic nerve model. Cancer cells with rapid PNI exhibit an amoeboid phenotype, highlighting the plasticity of cancer migration mode in enabling rapid nerve invasion.


Subject(s)
Amoeba , Nerve Tissue , Pancreatic Neoplasms , Mice , Animals , Pancreatic Neoplasms/genetics , Sciatic Nerve/metabolism , Pancreas/metabolism , Nerve Tissue/metabolism , Cell Movement/genetics , Neoplasm Invasiveness , Tumor Microenvironment
20.
Angew Chem Int Ed Engl ; 62(21): e202219255, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36919897

ABSTRACT

Achieving efficient blue electroluminescence (EL) remains the fundamental challenge that impedes perovskite light-emitting diodes (PeLEDs) towards commercial applications. The bottleneck accounting for the inefficient blue PeLEDs is broadly attributed to the poor-emissive blue perovskite emitters based on either mixed halide engineering or reduced-dimensional strategy. Herein, we report the high-performing sky-blue PeLEDs (490 nm) with the maximum EQE exceeding 15 % by incorporating a molecular modifier, namely 4,4'-Difluorophenone, for significantly suppressing the non-radiative recombination and tuning of the low-dimensional phase distribution of quasi-2D blue perovskites, which represents a remarkable paradigm for developing the new generation of blue lighting sources.

SELECTION OF CITATIONS
SEARCH DETAIL