Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950255

ABSTRACT

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

2.
Int J Biol Macromol ; : 133698, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972654

ABSTRACT

Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.

3.
PLoS One ; 19(6): e0298843, 2024.
Article in English | MEDLINE | ID: mdl-38917078

ABSTRACT

Diversity, equity, and inclusion (DEI) mission statements continue to be adopted by academic institutions in general, and by dental schools around the globe in particular. But DEI content seems to be under-developed in dental education. The objectives of this study were two-fold: to extract information from all the PBL cases at University of British Columbia's Faculty of Dentistry curriculum in terms of the diversity, equitable representation, and inclusion of patient and provider characteristics, context, and treatment outcomes; and; to compare these findings with the composition of the British Columbia census population, dental practice contextual factors, and the evidence on treatment outcomes within patient care. Information from all the 58 PBL cases was extracted between January and March 2023, focusing on patient and provider characteristics (e.g., age, gender, ethnicity), context (e.g., type of insurance), and treatment outcomes (e.g., successful/unsuccessful). This information was compared with the available literature. From all the 58 PBL cases, 0.4% included non-straight patients, while at least 4% of BC residents self-identify as non-straight; there were no cases involving First Nations patients although they make up 6% of the British Columbia population. Less than 10% of the cases involved older adults who make up almost 20% of the population. Only Treatments involving patients without a disability were 5.74 times more likely to be successful compared to those involving patients with a disability (p<0.05). The characteristics of the patients, practice context, and treatment outcomes portrayed in the existing PBL cases seem to differ from what is known about the composition of the British Columbia population, treatment outcome success, and practice context; a curriculum disconnect seems to exist. The PBL cases should be revised to better represent the population within which most students will practice.


Subject(s)
Curriculum , Problem-Based Learning , Humans , British Columbia , Male , Female , Cultural Diversity , Education, Dental , Adult
4.
Bone ; 186: 117174, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917962

ABSTRACT

Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.


Subject(s)
Ligamentum Flavum , Ossification of Posterior Longitudinal Ligament , Spinal Stenosis , Up-Regulation , Humans , Spinal Stenosis/pathology , Spinal Stenosis/genetics , Spinal Stenosis/metabolism , Up-Regulation/genetics , Ligamentum Flavum/pathology , Ligamentum Flavum/metabolism , Ossification of Posterior Longitudinal Ligament/genetics , Ossification of Posterior Longitudinal Ligament/pathology , Ossification of Posterior Longitudinal Ligament/metabolism , Osteogenesis/genetics , Cell Differentiation/genetics , Longitudinal Ligaments/pathology , Longitudinal Ligaments/metabolism , Male
5.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38860831

ABSTRACT

Measurement device independent quantum key distribution (MDI QKD) has attracted growing attention for its immunity to attacks at the measurement unit, but its unique structure limits the secret key rate. Utilizing the wavelength division multiplexing (WDM) technique and reducing error rates are effective strategies for enhancing the secret key rate. Reducing error rates often requires active feedback control of wavelengths using precise external references. However, for a multiwavelength laser, employing multiple references to stabilize each wavelength output places stringent demands on these references and significantly increases system complexity. Here, we demonstrate a stable, wavelength-tunable multiwavelength laser with an output wavelength ranging from 1270 to 1610 nm. Through precise temperature control and stable drive current, we passively lock the laser wavelength, achieving remarkable wavelength stability. This significantly reduce the error rate, leading to an almost doubling of the secret key rate compared to previous experiments. Furthermore, the exceptional wavelength stability offered by our multiwavelength laser, combined with the WDM technique, has further boosted the secret key rate of MDI QKD. With a wide wavelength tuning range of 5.1 nm, our multiwavelength laser facilitates flexible operation across multiple dense wavelength division multiplexing channels. Coupled with high wavelength stability and multiple wavelength outputs simultaneously, this laser offers a promising solution for a high-rate MDI QKD system.

6.
Environ Sci Technol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943037

ABSTRACT

Although the impacts of exotic wetland plant invasions on native biodiversity, landscape features, and carbon-nitrogen cycles are well appreciated, biogeochemical consequences posed by ecological competition, such as the heterogeneity of dissolved organic matter (DOM) from plant detritus and its impact on the formation of reactive oxygen species, are poorly understood. Thus, this study delves into O2•- photogeneration potential of DOM derived from three different parts (stem, leaf, and panicle) of invasive Spartina alterniflora (SA) and native Phragmites australis (PA). It is found that DOM from the leaves of SA and the panicles of PA has a superior ability to produce O2•-. With more stable aromatic structures and a higher proportion of sulfur-containing organic compounds, SA-derived DOM generally yields more O2•- than that derived from PA. UVA exposure enhances the leaching of diverse DOM molecules from plant detritus. Based on the reported monitoring data and our findings, the invasion of SA is estimated to approximately double the concentration of O2•- in the surrounding water bodies. This study can help to predict the underlying biogeochemical impacts from the perspective of aquatic photochemistry in future scenarios of plant invasion, seawater intrusion, wetland degradation, and elevated solar UV radiation.

7.
J Cancer ; 15(10): 2940-2947, 2024.
Article in English | MEDLINE | ID: mdl-38706898

ABSTRACT

Background: Three subphenotypes were identified for unresectable hepatocellular carcinoma (uHCC) after frontline transarterial chemoembolization (TACE). This study aimed to develop an individual smHAP-Ⅱ nomogram for uHCC patients after TACE. Methods: Between January 2007 to December 2016, 1517 uHCC patients undergoing TACE were included from four hospitals in China (derivation cohort: 597 cases; validation cohort: 920 cases). Multivariable Cox proportion regression analysis was used to develop a nomogram, incorporating postoperative subphenotypes (Phenotype 1, 2, 3) and HAP score (Score 0 to 4). The model was validated by a 1000-time bootstrap resampling procedure. The performance of the model was compared with existing ones by Harrell's C-index and Area Under Curve (AUC). Results: Postoperative subphenotypes modified the HAP score (smHAP-Ⅱ nomogram) was developed and validated, with the Harrell's C-index of the nomogram was 0.679 (SD: 0.029) for the derivation cohort and 0.727(SD:0.029) for the external cohort. The area under curves of the nomogram for 1-, 3-, and 5-year OS were 0.750, 0.710, and 0.732 for the derivation cohort, respectively (0.789, 0.762, and 0.715 for the external cohort). In the calibration curves stratified by treatment after TACE, the lines for re-TACE and stop-TACE cross at 0.23, indicating that patients with a 3-year predicted survival >23% would not benefit from TACE. Conclusions: The addition of postoperative subphenotypes significantly improved the prognostic performance. The smHAP-Ⅱ nomogram can be used for accurate prognostication and selection of optimal candidates for TACE, with the value to guide sequential treatment strategy.

8.
BMC Chem ; 18(1): 91, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724989

ABSTRACT

To improve the thermal and combustion properties of nanothermites, a design theory of changing the state of matter and structural state of the reactants during reaction was proposed. The Al/MoO3/KClO4 (Kp) nanothermite was prepared and the Al/MoO3 nanothermite was used as a control. SEM and XRD were used to characterize the nanothermites; DSC was used to test thermal properties; and constant volume and open combustion tests were performed to examine their combustion performance. Phase and morphology characterization of the combustion products were performed to reveal the mechanism of the aluminothermic reaction. The results show that the Al/MoO3/Kp nanothermite exhibited excellent thermal properties, with a total heat release of 1976 J·g- 1, increasing by approximately 33% of 1486 J·g- 1 of the Al/MoO3 nanothermite, and activation energy of 269.66 kJ·mol- 1, which demonstrated higher stability than the Al/MoO3 nanothermite (205.64 kJ·mol- 1). During the combustion test, the peak pressure of the Al/MoO3/Kp nanothermite was 0.751 MPa, and the average pressure rise rate was 25.03 MPa·s- 1, much higher than 0.188 MPa and 6.27 MPa·s- 1 of the Al/MoO3 nanothermite. The combustion products of Al/MoO3 nanothermite were Al2O3, MoO, and Mo, indicating insufficient combustion and incomplete reaction, whereas, the combustion products of Al/MoO3/Kp nanothermite were Al2O3, MoO, and KCl, indicating complete reaction. Their "coral-like" morphology was the effect of reactants solidifying after melting during the combustion process. The characterization of reactants and pressure test during combustion reveals the three stages of aluminothermic reaction in thermites. The excellent thermal and combustion performance of Al/MoO3/Kp nanothermite is attributed to the melt and decomposition of Kp into O2 in the third stage. This study provides new ideas and guidance for the design of high-performance nanothermites.

9.
ASAIO J ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809760

ABSTRACT

Burn patients face cardiopulmonary failure risks, with recent observational studies suggesting promising outcomes for extracorporeal membrane oxygenation (ECMO). However, the effectiveness and long-term survival remain unclear. Our study aims to assess mortality risk factors and long-term survival in burn patients with and without ECMO. This study used Taiwan's National Health Insurance Research Database and designed a case-control with onefold propensity score matching across variables including sex, age, total body surface area (TBSA) burned, and index date. We analyzed mortality and survival risk factors in each stratified group with/without ECMO. Finally, we analyze the mortality according to ECMO and TBSA burned, and the cause of death and long-term survival. From 2000 to 2015, 4,556 burn patients with ECMO compared to an equivalent number without ECMO. Primary mortality include male, age >65, TBSA ≥30%, escharotomy, hemodialysis, and bacteremia. The ECMO group showed lower survival across all stratified risk factors, with the primary cause of death being burn-related issues, followed by respiratory and heart failure. The overall mortality rate was 54.41% with ECMO and 40.94% without ECMO (p < 0.001). Additionally, long-term survival is lower in the group with ECMO. This research provides a valuable real-world gross report about ECMO efficacy and long-term survival among burn patients with/without ECMO.

11.
Cell Prolif ; : e13645, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38601993

ABSTRACT

The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.

12.
Sci Adv ; 10(17): eadm7164, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657071

ABSTRACT

Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.


Subject(s)
Cellular Microenvironment , Hydrogels , Mesenchymal Stem Cells , Regeneration , Tendons , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tendons/metabolism , Tendons/cytology , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Rats, Sprague-Dawley , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Male , Printing, Three-Dimensional , Myotendinous Junction
13.
Support Care Cancer ; 32(5): 314, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683417

ABSTRACT

PURPOSE: This study aimed to assess the different needs of patients with breast cancer and their families in online health communities at different treatment phases using a Latent Dirichlet Allocation (LDA) model. METHODS: Using Python, breast cancer-related posts were collected from two online health communities: patient-to-patient and patient-to-doctor. After data cleaning, eligible posts were categorized based on the treatment phase. Subsequently, an LDA model identifying the distinct need-related topics for each phase of treatment, including data preprocessing and LDA topic modeling, was established. Additionally, the demographic and interactive features of the posts were manually analyzed. RESULTS: We collected 84,043 posts, of which 9504 posts were included after data cleaning. Early diagnosis and rehabilitation treatment phases had the highest and lowest number of posts, respectively. LDA identified 11 topics: three in the initial diagnosis phase and two in each of the remaining treatment phases. The topics included disease outcomes, diagnosis analysis, treatment information, and emotional support in the initial diagnosis phase; surgical options and outcomes, postoperative care, and treatment planning in the perioperative treatment phase; treatment options and costs, side effects management, and disease prognosis assessment in the non-operative treatment phase; diagnosis and treatment options, disease prognosis, and emotional support in the relapse and metastasis treatment phase; and follow-up and recurrence concerns, physical symptoms, and lifestyle adjustments in the rehabilitation treatment phase. CONCLUSION: The needs of patients with breast cancer and their families differ across various phases of cancer therapy. Therefore, specific information or emotional assistance should be tailored to each phase of treatment based on the unique needs of patients and their families.


Subject(s)
Breast Neoplasms , Data Mining , Humans , Breast Neoplasms/psychology , Breast Neoplasms/therapy , Breast Neoplasms/rehabilitation , Female , Data Mining/methods , Needs Assessment , Internet
14.
Heliyon ; 10(7): e27989, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590878

ABSTRACT

Purpose: The aim of this study is to investigate abdominal aortic aneurysm (AAA), a disease characterised by inflammation and progressive vasodilatation, for novel gene-targeted therapeutic loci. Methods: To do this, we used weighted co-expression network analysis (WGCNA) and differential gene analysis on samples from the GEO database. Additionally, we carried out enrichment analysis and determined that the blue module was of interest. Additionally, we performed an investigation of immune infiltration and discovered genes linked to immune evasion and mitochondrial fission. In order to screen for feature genes, we used two PPI network gene selection methods and five machine learning methods. This allowed us to identify the most featrue genes (MFGs). The expression of the MFGs in various cell subgroups was then evaluated by analysis of single cell samples from AAA. Additionally, we looked at the expression levels of the MFGs as well as the levels of inflammatory immune-related markers in cellular and animal models of AAA. Finally, we predicted potential drugs that could be targeted for the treatment of AAA. Results: Our research identified 1249 up-regulated differential genes and 3653 down-regulated differential genes. Through WGCNA, we also discovered 44 genes in the blue module. By taking the point where several strategies for gene selection overlap, the MFG (ITGAL and SELL) was produced. We discovered through single cell research that the MFG were specifically expressed in T regulatory cells, NK cells, B lineage, and lymphocytes. In both animal and cellular models of AAA, the MFGs' mRNA levels rose. Conclusion: We searched for the AAA novel targeted gene (ITGAL and SELL), which most likely function through lymphocytes of the B lineage, NK cells, T regulatory cells, and B lineage. This analysis gave AAA a brand-new goal to treat or prevent the disease.

15.
Front Endocrinol (Lausanne) ; 15: 1344666, 2024.
Article in English | MEDLINE | ID: mdl-38544693

ABSTRACT

Background: To explore the predictive value of placental features in early pregnancy for gestational diabetes mellitus (GDM) using deep and radiomics-based machine learning (ML) applied to ultrasound imaging (USI), and to develop a nomogram in conjunction with clinical features. Methods: This retrospective multicenter study included 415 pregnant women at 11-13 weeks of gestation from two institutions: the discovery group from center 1 (n=305, control group n=166, GDM group n=139), and the independent validation cohort (n=110, control group n=57, GDM group n=53) from center 2. The 2D USI underwent pre-processed involving normalization and resampling. Subsequently, the study performed screening of radiomics features with Person correlation and mutual information methods. An RBF-SVM model based on radiomics features was constructed using the five-fold cross-validation method. Resnet-50 as the backbone network was employed to learn the region of interest and constructed a deep convolutional neural network (DLCNN) from scratch learning. Clinical variables were screened using one-way logistic regression, with P<0.05 being the threshold for statistical significance, and included in the construction of the clinical model. Nomogram was built based on ML model, DLCNN and clinical models. The performance of nomogram was assessed by calibration curves, area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results: The AUCs for the ML model in the discovery cohort and independent validation cohort were 0.91 (0.88-0.94) and 0.86 (0.79-0.93), respectively. And 0.65 (0.59-0.71), 0.69 (0.59-0.79) for the DLCNN, 0.66 (0.59-0.72), 0.66 (0.55-0.76) for the clinical model, respectively. The nomogram exhibited the highest performance with AUCs of 0.93 (0.90-0.95) and 0.88 (0.81-0.94) The receiver operating characteristic curve (ROC) proved the superiority of the nomogram of clinical utility, and calibration curve showed the goodness of fit of the model. The DCA curve indicated that the nomogram outperformed other models in terms of net patient benefit. Conclusions: The study emphasized the intrinsic relationship between early pregnancy placental USI and the development of GDM. The use of nomogram holds potential for clinical applications in predicting the development of GDM.


Subject(s)
Artificial Intelligence , Diabetes, Gestational , Pregnancy , Female , Humans , Ultrasonics , Diabetes, Gestational/diagnosis , Placenta/diagnostic imaging , Neural Networks, Computer
16.
Front Nutr ; 11: 1371170, 2024.
Article in English | MEDLINE | ID: mdl-38549749

ABSTRACT

Objective: There have been proposals that vitamin D may be associated with a reduction in the incidence of anxiety disorders. However, the findings thus far have been inconsistent, warranting further investigation. The purpose of this paper is to explore the link between serum vitamin D and anxiety. Methods: Data are from the National Health and Nutrition Examination Survey (NHANES) in the United States from 2007 to 2012. Study included a total of 12,232 participants, and through the multivariate logistic regression to study the relationship between serum vitamin D and anxiety, smooth curve fitting is used to study the nonlinear relationship between serum vitamin D levels and anxiety. Results: Serum vitamin D levels demonstrated a negative correlation with anxiety (p < 0.001). Vitamin D exhibited a significant impact on anxiety (Q4:OR = 0.774, 95% CI: 0.663-0.903, p < 0.01), and this effect remained significant even after adjusting for confounding variables (Q4:OR = 0.781, 95% CI: 0.669-0.912, p < 0.01). Smoothed curve fitting revealed a negative association between serum vitamin D levels and the risk of anxiety, and these findings persisted after accounting for confounding variables. Conclusion: Serum vitamin D levels were inversely associated with anxiety risk in US adults. In the future, more accurate prospective studies are needed to confirm this result.

17.
Water Res ; 255: 121519, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552488

ABSTRACT

Whilst it is generally recognized that phosphate enables to promote the removal of some organic pollutants with peroxymonosulfate (PMS) oxidation, however, there is an ongoing debate as to whether free radicals are involved. By integrating different methodologies, here we provide new insights into the reaction mechanism of the binary mixture of phosphates (i.e., NaH2PO4, Na2HPO3, and NaH2PO2) with peroxymonosulfate (PMS) or hydrogen peroxide (H2O2). Enhanced degradation of organic pollutants and observation of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) adducts (i.e. DMPOOH and 5,5-dimethyl-2-oxopyrroline-1-oxyl (DMPOX)) with electron paramagnetic resonance (EPR) in most phosphates/PMS system seemly support a radical-dominant mechanism. However, fluorescence probe experiments confirm that no significant amount of hydroxyl radicals (•OH) are produced in such reaction systems. PMS in the phosphate solutions (without any organics) remains relatively stable, but is only consumed while organic substrates are present, which is distinct from a typical radical-dominant Co2+/PMS system where PMS is continuously decomposed. Through density functional theory (DFT) calculation, the energy barriers of the phosphates/PMS reaction processes are greatly decreased when non-radical mechanism dominates. Complementary evidence suggests that the reactive intermediates of PMS-phosphate complex, rather than the free radicals, are capable of oxidizing electron-rich substrates such as DMPO and organic pollutants. Taking the case of phosphate/PMS system as an example, this study demonstrates the necessity of acquisition of lines of evidence for resolving paradoxes in identifying EPR adducts.

18.
JOR Spine ; 7(1): e1304, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304329

ABSTRACT

Background: Marfan syndrome (MFS) is a rare genetic disorder caused by mutations in the Fibrillin-1 gene (FBN1) with significant clinical features in the skeletal, cardiopulmonary, and ocular systems. To gain deeper insights into the contribution of epigenetics in the variability of phenotypes observed in MFS, we undertook the first analysis of integrating DNA methylation and gene expression profiles in whole blood from MFS and healthy controls (HCs). Methods: The Illumina 850K (EPIC) DNA methylation array was used to detect DNA methylation changes on peripheral blood samples of seven patients with MFS and five HCs. Associations between methylation levels and clinical features of MFS were analyzed. Subsequently, we conducted an integrated analysis of the outcomes of the transcriptome data to analyze the correlation between differentially methylated positions (DMPs) and differentially expressed genes (DEGs) and explore the potential role of methylation-regulated DEGs (MeDEGs) in MFS scoliosis. The weighted gene co-expression network analysis was used to find gene modules with the highest correlation coefficient with target MeDEGs to annotate their functions in MFS. Results: Our study identified 1253 DMPs annotated to 236 genes that were primarily associated with scoliosis, cardiomyopathy, and vital capacity. These conditions are typically associated with reduced lifespan in untreated MFS. We calculated correlations between DMPs and clinical features, such as cobb angle to evaluate scoliosis and FEV1% to assess pulmonary function. Notably, cg20223687 (PTPRN2) exhibited a positive correlation with cobb angle of scoliosis, potentially playing a role in ERKs inactivation. Conclusions: Taken together, our systems-level approach sheds light on the contribution of epigenetics to MFS and offers a plausible explanation for the complex phenotypes that are linked to reduced lifespan in untreated MFS patients.

19.
Phys Rev Lett ; 132(3): 036502, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307085

ABSTRACT

The recently discovered nickelate superconductor La_{3}Ni_{2}O_{7} has a high transition temperature near 80 K under pressure, providing an additional avenue for exploring unconventional superconductivity. Here, with state-of-the-art tensor-network methods, we study a bilayer t-J-J_{⊥} model for La_{3}Ni_{2}O_{7} and find a robust s-wave superconductive (SC) order mediated by interlayer magnetic couplings. Large-scale density matrix renormalization group calculations find algebraic pairing correlations with Luttinger parameter K_{SC}≲1. Infinite projected entangled-pair state method obtains a nonzero SC order directly in the thermodynamic limit, and estimates a strong pairing strength Δ[over ¯]_{z}∼O(0.1). Tangent-space tensor renormalization group simulations elucidate the temperature evolution of SC pairing and further determine a high SC temperature T_{c}^{*}/J∼O(0.1). Because of the intriguing orbital selective behaviors and strong Hund's rule coupling in the compound, t-J-J_{⊥} model has strong interlayer spin exchange (while negligible interlayer hopping), which greatly enhances the SC pairing in the bilayer system. Such a magnetically mediated pairing has also been observed recently in the optical lattice of ultracold atoms. Our accurate and comprehensive tensor-network calculations reveal a robust SC order in the bilayer t-J-J_{⊥} model and shed light on the pairing mechanism of the high-T_{c} nickelate superconductor.

20.
Biomedicines ; 12(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38398025

ABSTRACT

The muscle-tendon junction (MTJ) is a highly specific tissue interface where the muscle's fascia intersects with the extracellular matrix of the tendon. The MTJ functions as the particular structure facilitating the transmission of force from contractive muscle fibers to the skeletal system, enabling movement. Considering that the MTJ is continuously exposed to constant mechanical forces during physical activity, it is susceptible to injuries. Ruptures at the MTJ often accompany damage to both tendon and muscle tissues. In this review, we attempt to provide a precise definition of the MTJ, describe its subtle structure in detail, and introduce therapeutic approaches related to MTJ tissue engineering. We hope that our detailed illustration of the MTJ and summary of the representative research achievements will help researchers gain a deeper understanding of the MTJ and inspire fresh insights and breakthroughs for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...