Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(9): 2088-2107, 2024 09.
Article in English | MEDLINE | ID: mdl-39087347

ABSTRACT

BACKGROUND: HCC-1 (hemofiltrate CC chemokine-1), a CC-type chemokine, exerts function to change intracellular calcium concentration, induce leukocyte, and manipulate enzyme release especially in monocytes. It has been reported that HCC-1 can predict the persistent acute kidney injury or suppress hepatocellular carcinoma by modulating cell cycle and promoting apoptosis; however, the effect of HCC-1 on atherosclerosis is poorly understood. Here, we aimed to clarify the function and mechanism of HCC-1 in atherosclerosis and whether it could serve as a novel biomarker for the diagnosis of atherosclerosis. METHODS: HCC-1 expression in serum, atherosclerotic plaques, and normal arterial tissue from patients with atherosclerosis and control group was assessed by ELISA, immunohistochemistry and confocal microscope, and bioinformatic analysis. The atherosclerotic model of HCC-1 overexpressing and control mice was generated by tail vein injection of adeno-associated virus serotype 9-HCC-1 on an ApoE-/- background. Cell adhesion, polarization, and pyroptosis were evaluated in vitro. The relationship between HCC-1 concentration in serum and atherosclerosis was analyzed in patients with atherosclerosis. RESULTS: HCC-1 expression was positively correlated with the occurrence and stable-unstable switch of atherosclerosis under bioinformatic analysis, which is further supported by the results of increased HCC-1 expression in atherosclerosis patients both in serum and atherosclerotic plaque. adeno-associated virus serotype 9-HCC-1 mice had higher levels of inflammatory factors, increased macrophage accumulation and pyroptotic rate in plaque, and decreased atherosclerotic plaque stability. In vitro, HCC-1 promoted monocyte adhesion and M1 polarization and induced inflammation and pyroptosis both in endothelial cells and macrophages. CONCLUSIONS: HCC-1 expression was increased in patients with atherosclerosis, and HCC-1 overexpression accelerated atherosclerotic burden via an enhancement in monocyte recruitment, M1 polarization, and pyroptosis both in endothelial cells and macrophages. Our findings suggested that HCC-1 may serve as an early biomarker for the diagnosis of atherosclerosis, with the capacity to reflect the degree of stenosis.


Subject(s)
Atherosclerosis , Biomarkers , Endothelial Cells , Macrophages , Pyroptosis , Humans , Animals , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/blood , Macrophages/metabolism , Biomarkers/blood , Biomarkers/metabolism , Male , Middle Aged , Female , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Disease Models, Animal , Mice, Inbred C57BL , Plaque, Atherosclerotic , Early Diagnosis , Case-Control Studies , Mice, Knockout, ApoE , Aged , Predictive Value of Tests , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Apoptosis Regulatory Proteins , Receptors, Scavenger
2.
Atherosclerosis ; 379: 117183, 2023 08.
Article in English | MEDLINE | ID: mdl-37549548

ABSTRACT

BACKGROUND AND AIMS: The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play an essential role in the pathogenesis of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) have been reported as important regulators in a number of diseases. However, very little is known regarding the functional role of lncRNAs in governing proliferation and migration of VSMCs and AS development. METHODS: Both in vitro and in vivo assays were performed to investigate the role of lncRNA in the pathophysiology of AS. Our previous lncRNA arrays revealed that lncRNA RP4-639F20.1 was significantly decreased in atherosclerotic plaques. Lentivirus overexpressing RP4-639F20.1 and lncRNA RP4-639F20.1 silencing vectors (Si-lnc-RP4-639F20.1) were constructed and transfected in VSMCs. The in vitro functions of lncRNA were analyzed by CCK-8 assays, EdU assays, scratch wound assays, transwell assays, qRT-PCR and Western blot analyses. RNA fluorescence in situ hybridization, immunoprecipitation and mRNA microarrays were used to explore the underlying mechanism. Adeno-associated-virus-9 (AAV9) overexpressing RP4-639F20.1 was constructed and injected intravenously into ApoE-/- mice to explore the role of lncRNA in vivo. RESULTS: In vitro experiments showed that lncRNA RP4-639F20.1 interacted with THRAP3 and downregulated c-FOS expression. Both increase of lncRNA RP4-639F20.1 expression and knockdown of c-FOS inhibited the expression of MMP10 and VEGF-α in VSMCs and suppressed VSMCs proliferation and migration. In vivo experiments using ApoE-/- mice fed a high-fat diet demonstrated that lncRNA RP4-639F20.1 overexpression deterred atherosclerosis and decreased lipid levels in atherosclerotic lesions. Patients with coronary artery disease were found to have higher c-FOS levels than healthy individuals and c-FOS expression was positively correlated with the SYNTAX score of patients. CONCLUSIONS: Overall, these data indicated that lncRNA RP4-639F20.1/THRAP3/c-FOS pathway protects against the development of atherosclerosis by suppressing VSMCs proliferation and migration. LncRNA RP4-639F20.1 and c-FOS could represent potential therapeutic targets to ameliorate atherosclerosis-related diseases.


Subject(s)
Atherosclerosis , Proto-Oncogene Proteins c-fos , RNA, Long Noncoding , Transcription Factors , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , In Situ Hybridization, Fluorescence , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Mice, Knockout, ApoE
3.
Emerg Microbes Infect ; 11(1): 1281-1292, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35437096

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKp) is a notorious clinical pathogen that is more likely to cause severe primary and metastatic abscesses. The dissemination of antimicrobial-resistant hvKp isolates has been reported worldwide, posing a great challenge and severe clinical threat. However, the mechanisms of antimicrobial-resistant hvKp isolates prevalent worldwide are not well precise. Outer membrane vesicles (OMVs) secreted from gram-negative bacteria are an important vehicle for delivering effector molecules inter- and intra-species. To explore whether OMVs as the vector of virulence genes horizontal transfer among Klebsiella pneumoniae and to explain the potential mechanism for the development of antimicrobial-resistant hvKp isolates, we isolated OMVs from hvKp and classical Klebsiella pneumoniae (cKp) by sequential differential centrifugation, respectively. Then, the characteristics and contents of hvKp-OMVs and cKp-OMVs were analyzed. These hvKp-OMVs contain virulence genes, which could be transferred from hvKp horizontally to extended-spectrum beta lactamase (ESBL)-producing cKp, leading to the production of antimicrobial-resistant hypervirulent transformants. Further experiments confirmed the transformants exhibited antimicrobial resistance and hypervirulent phenotypes in vitro and in vivo. In short, this work demonstrated that hvKp-OMVs facilitated virulence genes transfer, allowing an increase in the virulence level of ESBL-producing cKp and providing a new mechanism for the emergence of antimicrobial-resistant hvKp isolates.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents , Humans , Klebsiella Infections/microbiology , Virulence/genetics , Virulence Factors/genetics
4.
J Clin Lab Anal ; 34(7): e23281, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32157743

ABSTRACT

BACKGROUND: Detection of hepatitis B virus (HBV) is vital for the diagnosis of hepatitis B infection. A novel test loop-mediated isothermal amplification (LAMP) has been successfully applied to detect various pathogens. However, the accuracy of LAMP in diagnosing HBV remains unclear. Therefore, in the present study, the accuracy of LAMP for HBV detection was evaluated systematically. METHODS: Embase, Cochrane Library, and PubMed databases were searched for studies using LAMP to detect HBV. Then, two researchers extracted data and assessed the quality of literature using the QUADAS-2 tool independently. I2 statistic and chi-square test were analyzed to investigate the heterogeneity, and Deek's funnel plot assessed the publication bias. The pooled sensitivity (SEN), specificity (SPE), positive LR (PLR), negative LR (NLR), diagnostic odds ratio (DOR), and 95% confidence intervals were displayed in forest plots. We calculated the area under the curve (AUC) to assess the overall efficiency of LAMP for HBV detection. RESULTS: A total of nine studies with 1298 samples were finally included in this evaluation. The pooled sensitivity and specificity of HBV detection were 0.91 (95% CI: 0.89 ~ 0.92) and 0.97 (95% CI: 0.94 ~ 0.99), respectively. The PLR, NLR, and DOR were 16.93 (95% CI: 6.15 ~ 46.55), 0.08 (95% CI: 0.05 ~ 0.14), and 397.57 (95% CI: 145.41 ~ 1087.07). Besides, the AUC was 0.9872, and Deek's plot suggested that there existed publication bias in the studies. CONCLUSION: Compared with PCR, LAMP is a simple, rapid, and effective assay to diagnose HBV. However, additional evidence is essential to confirm that LAMP can replace other methods in diagnosing HBV infection.


Subject(s)
Hepatitis B/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Hepatitis B/blood , Humans , Quality Control , Sensitivity and Specificity
5.
Front Microbiol ; 11: 603183, 2020.
Article in English | MEDLINE | ID: mdl-33488545

ABSTRACT

Extracellular vesicles (EVs) loaded with proteins, nucleic acids, membrane lipids, and other virulence factors could participate in pathogenic processes in some fungi such as Cryptococcus neoformans and Candida albicans. However, the specific characteristics of EVs derived from Talaromyces marneffei (TM) still have not been figured out yet. In the present study, it has been observed that TM-derived EVs were a heterogeneous group of nanosized membrane vesicles (30-300 nm) under nanoparticle tracking analysis and transmission electron microscopy. The DiI-labeled EVs could be taken up by RAW 264.7 macrophage cells. Incubation of EVs with macrophages would result in increased expression levels of reactive oxygen species, nitric oxide, and some inflammatory factors including interleukin-1ß, interleukin-6, interleukin-10, and tumor necrosis factor. Furthermore, the expression of co-stimulatory molecules (CD80, CD86, and MHC-II) was also increased in macrophages stimulated with EVs. The level of inflammatory factors secreted by macrophages showed a significant decrease when EVs were hydrolyzed by protease, while that of DNA and RNA hydrolase treatment remained unchanged. Subsequently, some virulence factors in EVs including heat shock protein, mannoprotein 1, and peroxidase were determined by liquid chromatography-tandem mass spectrometry. Taken together, our results indicated that the TM-derived EVs could mediate inflammatory response and its protein would play a key role in regulating the function of RAW 264.7 macrophage cells.

SELECTION OF CITATIONS
SEARCH DETAIL