Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
PLoS One ; 19(8): e0308723, 2024.
Article in English | MEDLINE | ID: mdl-39133718

ABSTRACT

Fibrosis is a complex pathological process that can lead to the permanent loss of biological function, with P2ry2 playing a crucial role in this process. Long non-coding RNAs (lncRNAs) have been reported to play an critically important role in the fibrotic process. However, it remains unclear whether lncRNAs can regulate fibrosis through P2ry2. In this study, we detected the expression of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1). We investigated the expression patterns of lnc-MALAT1 and P2ry2 in denervated skeletal muscle, a classical model of fibrosis. Additionally, we utilized a TGF-ß-mediated fibrosis model in NIH/3T3 cells to examine the effects of lnc-MALAT1 and P2ry2 on fibroblast activation and the underlying regulatory mechanisms in vitro. Our results demonstrated that the expression levels of lnc-MALAT1 and P2ry2 were consistently elevated in denervated skeletal muscle, correlating with the degree of fibrosis. In vitro experiments confirmed the regulatory effect of lnc-MALAT1 on P2ry2. Furthermore, we identified miR-335-3p as a potential key molecule in the regulatory relationship of lnc-MALAT1/P2ry2. Dual luciferase reporter assays and AGO2-RIP verified the molecular sponging effect of lnc-MALAT1 on miR-335-3p. Additionally, we validated the regulation of the lnc-MALAT1/miR-335-3p/P2ry2 axis through experimental approaches. In conclusion, our study identified a crucial role of lnc-MALAT1/miR-335-3p/P2ry2 axis in fibroblast activation, providing a promising treatment option against the fibrosis.


Subject(s)
Fibroblasts , Fibrosis , MicroRNAs , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Fibroblasts/metabolism , NIH 3T3 Cells , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Mice, Inbred C57BL , Transforming Growth Factor beta/metabolism , Gene Expression Regulation , RNA, Competitive Endogenous
2.
Biomark Res ; 12(1): 81, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135084

ABSTRACT

Tissue-resident macrophages and recruited macrophages play pivotal roles in innate immunity and the maintenance of brain homeostasis. Investigating the involvement of these macrophage populations in eliciting pathological changes associated with neurodegenerative diseases has been a focal point of research. Dysregulated states of macrophages can compromise clearance mechanisms for pathological proteins such as amyloid-ß (Aß) in Alzheimer's disease (AD) and TDP-43 in Amyotrophic lateral sclerosis (ALS). Additionally, recent evidence suggests that abnormalities in the peripheral clearance of pathological proteins are implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, numerous genome-wide association studies have linked genetic risk factors, which alter the functionality of various immune cells, to the accumulation of pathological proteins. This review aims to unravel the intricacies of macrophage biology in both homeostatic conditions and neurodegenerative disorders. To this end, we initially provide an overview of the modifications in receptor and gene expression observed in diverse macrophage subsets throughout development. Subsequently, we outlined the roles of resident macrophages and recruited macrophages in neurodegenerative diseases and the progress of targeted therapy. Finally, we describe the latest advances in macrophage imaging methods and measurement of inflammation, which may provide information and related treatment strategies that hold promise for informing the design of future investigations and therapeutic interventions.

3.
Int J Biol Macromol ; : 134572, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122067

ABSTRACT

In recent years, the isolation, purification, structural characterization of plant polysaccharides from natural resources have arrested widespread attention. Aralia elata (Miq.) Seem (A. elata) belongs to the Aralia genus of the Araliaceae family, which is one of the most popular edible mountain vegetables in East Asia. A. elata has been widely distributed in China, particularly in Liaoning, Jilin, and Heilongjiang provinces in northeast China, in which it has been used as a traditional herbal medicine for thousands of years to treat various diseases, such as hepatitis and rheumatoid arthritis. A. elata polysaccharides (AEPs) are one of the major active ingredients of A. elata, the monosaccharide composition of which consist primarily of Gal, Glc, Man, Ara, and Rha, with molecular weights ranging from 1.56 × 104 Da to 1.12 × 105 Da. AEPs have attracted worldwide attention owing to their various biological activities, including antioxidant activity, antitumor activity and hepatoprotection. The present review aims to comprehensively summarize the research advances on the polysaccharides isolated from A. elata, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities over the past few decades. This review would establish a solid foundation for further development and application in the field of AEPs.

4.
Int J Gynecol Cancer ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089728

ABSTRACT

OBJECTIVE: To predict preoperative inguinal lymph node metastasis in vulvar cancer patients using a machine learning model based on imaging features and clinical data from pelvic magnetic resonance imaging (MRI). METHODS: 52 vulvar cancer patients were divided into a training set (n=37) and validation set (n=15). Clinical data and MRI images were collected, and regions of interest were delineated by experienced radiologists. A total of 1688 quantitative imaging features were extracted using the Radcloud platform. Dimensionality reduction and feature selection were applied, resulting in a radiomics signature. Clinical characteristics were screened, and a combined model integrating the radiomics signature and significant clinical features was constructed using logistic regression. Four machine learning classifiers (K nearest neighbor, random forest, adaptive boosting, and latent dirichlet allocation) were trained and validated. Model performance was evaluated using the receiver operating characteristic curve and the area under the curve (AUC), as well as decision curve analysis. RESULTS: The radiomics score significantly differentiated between lymph node metastasis positive and negative patients in both the training and validation sets. The combined model demonstrated excellent discrimination, with AUC values of 0.941 and 0.933 in the training and validation sets, respectively. The calibration curve and decision curve analysis confirmed the model's high predictive accuracy and clinical utility. Among the machine learning classifiers, latent dirichlet allocation and random forest models achieved AUC values >0.7 in the validation set. Integrating all four classifiers resulted in a total model with an AUC of 0.717 in the validation set. CONCLUSION: Radiomics combined with artificial intelligence can provide a new method for prediction of inguinal lymph node metastasis of vulvar cancer before surgery.

5.
Front Cardiovasc Med ; 11: 1439868, 2024.
Article in English | MEDLINE | ID: mdl-39091360

ABSTRACT

[This corrects the article DOI: 10.3389/fcvm.2024.1401010.].

6.
Neurochem Res ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002091

ABSTRACT

Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.

7.
Heliyon ; 10(12): e33062, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027432

ABSTRACT

Long-term denervation-induced atrophy and fibrosis of skeletal muscle due to denervation leads to poor recovery of muscle function. Studies have shown that the transforming growth factor-ß1 (TGF-ß1)-Smad signaling pathway plays a central role in muscle atrophy and fibrosis. Recent studies demonstrate the role of microRNAs (miRs) in various pathological conditions, including muscle regeneration. miR-21 has been shown to play a dynamic role in inflammatory responses and in accelerating injury responses to fibrosis. We used both RNA sequencing and quantitative RT-PCR strategies to examine the alternations of miRNAs during denervation-induced gastrocnemius muscle atrophy and fibrosis. Our data showed that MiR-21 was upregulated in denervated gastrocnemius muscle tissue, and TGF-ß1treatment increased miR-21 expression. Inhibition of miR-21 reduced gastrocnemius muscle fibrosis and significantly downregulated the expression of p-SMAD2/3 and the fibrosis-associated markers TGF-ß1, connective tissue growth factor, alpha smooth muscle actin. Masson's trichrome staining revealed that atrophy and fibrosis in gastrocnemius muscle tissue were reduced in the miR-21 inhibition group compared to the control group. We confirmed that SMAD7 is a direct target of miR-21 using a dual luciferase assay. Furthermore, Immunofluorescence and Western blot analyses revealed that miR-21 inhibition reduced SMAD2/3 phosphorylation and nuclear translocation. While SMAD7-siRNA abolished the effect. Consequently, the discovery that miR-21 regulates the atrophy and fibrosis of the gastrocnemius muscle offers a possible therapeutic approach for their management.

8.
Int J Biol Macromol ; 272(Pt 1): 132861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838884

ABSTRACT

Semen Coicis (S. Coicis) has been regarded as a valuable source of traditional herbal medicine in China for thousands of years. S. Coicis polysaccharides (SCPs) are one of the most important bioactive ingredients of S. Coicis, which have attracted worldwide attention, because of their great marketing potential and development prospects. Hot water extraction is currently the most commonly used method to isolate SCPs. The structural characteristics of SCPs have been extensively investigated through various advanced modern analytical techniques to dissect the structure-activity relationships. SCPs are mainly composed of diverse monosaccharides, from which Rha and Ara are the most prevalent glycosyl groups. In addition, the structures of SCPs are found to be closely related to their multiple biological activities, including antioxidant activity, immunomodulatory function, antitumor activity, hypoglycemic effect, intestinal microbiota regulatory activity, anti-inflammatory activity, among others. In view of this, this review aimed to provide systematic and current information on the isolation, structural characteristics, and bioactivities of SCPs to support their future applications as therapeutic agents and functional foods.


Subject(s)
Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Animals , Structure-Activity Relationship , Monosaccharides/analysis , Monosaccharides/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification
9.
Article in English | MEDLINE | ID: mdl-38925632

ABSTRACT

BACKGROUND: Aging negatively impacts tissue repair, particularly in skeletal muscle, where the regenerative capacity of muscle stem cells (MuSCs) diminishes with age. Although aerobic exercise is known to attenuate skeletal muscle atrophy, its specific impact on the regenerative and repair capacity of MuSCs remains unclear. METHODS: Mice underwent moderate-intensity continuous training (MICT) from 9 months (aged + Ex-9M) or 20 months (aged + Ex-20M) to 25 months, with age-matched (aged) and adult controls. Histological examinations and MuSC transplantation assays assessed aerobic exercise effects on MuSC function and muscle regeneration. CCN2/connective tissue growth factor modulation (overexpression and knockdown) in MuSCs and AICAR supplementation effects were explored. RESULTS: Aged mice displayed significantly reduced running duration (65.33 ± 4.32 vs. 161.9 ± 1.29 min, mean ± SD, P < 0.001) and distance (659.17 ± 103.64 vs. 3058.28 ± 46.26 m, P < 0.001) compared with adults. This reduction was accompanied by skeletal muscle weight loss and decreased myofiber cross-sectional area (CSA). However, MICT initiated at 9 or 20 months led to a marked increase in running duration (142.75 ± 3.14 and 133.86 ± 20.47 min, respectively, P < 0.001 compared with aged mice) and distance (2347.58 ± 145.11 and 2263 ± 643.87 m, respectively, P < 0.001). Additionally, MICT resulted in increased skeletal muscle weight and enhanced CSA. In a muscle injury model, aged mice exhibited fewer central nuclear fibres (CNFs; 266.35 ± 68.66/mm2), while adult, aged + Ex-9M and aged + Ex-20M groups showed significantly higher CNF counts (610.82 ± 46.76, 513.42 ± 47.19 and 548.29 ± 71.82/mm2, respectively; P < 0.001 compared with aged mice). MuSCs isolated from aged mice displayed increased CCN2 expression, which was effectively suppressed by MICT. Transplantation of MuSCs overexpressing CCN2 (Lenti-CCN2, Lenti-CON as control) into injured tibialis anterior muscle compromised regeneration capacity, resulting in significantly fewer CNFs in the Lenti-CCN2 group compared with Lenti-CON (488.07 ± 27.63 vs. 173.99 ± 14.28/mm2, P < 0.001) at 7 days post-injury (dpi). Conversely, knockdown of CCN2 (Lenti-CCN2shR, Lenti-NegsiR as control) in aged MuSCs improved regeneration capacity, significantly increasing the CNF count from 254.5 ± 26.36 to 560.39 ± 48.71/mm2. Lenti-CCN2 MuSCs also increased fibroblast proliferation and exacerbated skeletal muscle fibrosis, while knockdown of CCN2 in aged MuSCs mitigated this pattern. AICAR supplementation, mimicking exercise, replicated the beneficial effects of aerobic exercise by mitigating muscle weight decline, enhancing satellite cell activity and reducing fibrosis. CONCLUSIONS: Aerobic exercise effectively reverses the decline in endurance capacity and mitigates muscle atrophy in aged mice. It inhibits CCN2 secretion from senescent MuSCs, thereby enhancing skeletal muscle regeneration and preventing fibrosis in aged mice. AICAR supplementation mimics the beneficial effects of aerobic exercise.

10.
Genome Biol ; 25(1): 157, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877540

ABSTRACT

Methylation-based liquid biopsies show promises in detecting cancer using circulating cell-free DNA; however, current limitations impede clinical application. Most assays necessitate substantial DNA inputs, posing challenges. Additionally, underrepresented tumor DNA fragments may go undetected during exponential amplification steps of traditional sequencing methods. Here, we report linear amplification-based bisulfite sequencing (LABS), enabling linear amplification of bisulfite-treated DNA fragments in a genome-wide, unbiased fashion, detecting cancer abnormalities with sub-nanogram inputs. Applying LABS to 100 patient samples revealed cancer-specific patterns, copy number alterations, and enhanced cancer detection accuracy by identifying tissue-of-origin and immune cell composition.


Subject(s)
DNA Methylation , Neoplasms , Sequence Analysis, DNA , Sulfites , Humans , Neoplasms/genetics , Sequence Analysis, DNA/methods , Cell-Free Nucleic Acids , Nucleic Acid Amplification Techniques/methods , DNA Copy Number Variations , DNA, Neoplasm/genetics , Circulating Tumor DNA/genetics
11.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853843

ABSTRACT

Differential expression analysis is pivotal in single-cell transcriptomics for unraveling cell-type- specific responses to stimuli. While numerous methods are available to identify differentially expressed genes in single-cell data, recent evaluations of both single-cell-specific methods and methods adapted from bulk studies have revealed significant shortcomings in performance. In this paper, we dissect the four major challenges in single-cell DE analysis: normalization, excessive zeros, donor effects, and cumulative biases. These "curses" underscore the limitations and conceptual pitfalls in existing workflows. In response, we introduce a novel paradigm addressing several of these issues.

12.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854149

ABSTRACT

The concept of gene expression stability within a homeostatic cell is explored through the gene homeostasis Z-index, a measure that highlights genes under active regulation in response to internal and external stimuli. This index reveals distinct regulatory activities and patterns in different organs, such as enhanced synaptic transmission in pancreatic islets. The research indicates that traditional mean-based methods may miss these nuances, underlining the significance of new metrics in identifying gene regulation specifics in cellular adaptation.

13.
ACS Med Chem Lett ; 15(5): 739-745, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746880

ABSTRACT

Intracellular pharmacokinetics (PK) of activated drugs is a window to understanding the pharmacodynamics of prodrug-enzyme-ultrasound therapy. Herein PK of ZD2767D (i.e., activated drug) in the ZD2767P+CPG2+US system on A549, A549/DDP, SKOV3, and SKOV3/DDP cells were evaluated (A549/DDP and SKOV3/DDP were cisplatin-resistant sublines). The noncompartment model under extravascular input mode was deemed appropriate for evaluating drug level vs time curves; Cmax, AUClast, MRTlast, Vz, and Cl can reflect the PK feature, but t1/2, AUCinf, and MRTinf were irrational; higher accumulation and slower elimination characterized the PK mechanism of ZD2767P+CPG2+US; enhanced permeability and retention effect can be assessed with Cmax, AUClast, MRTlast, and tlast; ultrasound equivalently modulated Cmax and AUClast in sensitive and resistant cells. The experimental design and dose proportionality were discussed.

14.
J Am Chem Soc ; 146(22): 15053-15060, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776531

ABSTRACT

Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.

15.
Angew Chem Int Ed Engl ; 63(32): e202404170, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38781086

ABSTRACT

The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.

16.
Front Cardiovasc Med ; 11: 1401010, 2024.
Article in English | MEDLINE | ID: mdl-38745758

ABSTRACT

Introduction: Intrahepatic cholestasis of pregnancy (ICP), the most prevalent liver disorder specific to pregnancy, affects approximately 1.5%-4% of pregnancies. However, the influence of ICP on cardiovascular disease (CVD), including hypertension (HTN) and coronary artery disease (CAD), has not been thoroughly investigated. Methods: This study explores the causal relationship between ICP and CVD (HTN, CAD) using Mendelian Randomization (MR). Utilizing summary-level data from Genome-Wide Association Studies (GWAS), we applied the inverse-variance weighted (IVW) method, supplemented by sensitivity and reverse MR analyses, to ascertain robustness. Results: Our findings reveal significant causal links, indicating ICP notably increases the risk of CVD (P = 0.001), hypertension (HTN, P = 0.024), and coronary artery disease (CAD, P = 0.039). A two-step MR analysis highlighted the mediation role of lipid profiles, with LDL, TC, and Apo-B contributing to increased CVD risk by 25.5%, 12.2%, and 21.3%, respectively. Additionally, HTN was identified as a mediator in the ICP-CAD association, accounting for a 14.5% mediation effect. Discussion: The results underscore the genetic predisposition of ICP to elevate CVD risk and the critical mediating role of lipid levels, emphasizing the need for vigilant lipid monitoring and early intervention in individuals with ICP.

17.
Langenbecks Arch Surg ; 409(1): 138, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676783

ABSTRACT

PURPOSE: Treating an infiltration of the recurrent laryngeal nerve (RLN) by thyroid carcinoma remains a subject of ongoing debate. Therefore, this study aims to provide a novel strategy for intraoperative phenosurgical management of RLN infiltrated by thyroid carcinoma. METHODS: Forty-two patients with thyroid carcinoma infiltrating the RLN were recruited for this study and divided into three groups. Group A comprised six individuals with medullary thyroid cancer who underwent RLN resection and arytenoid adduction. Group B consisted of 29 differentiated thyroid cancer (DTC)patients who underwent RLN resection and ansa cervicalis (ACN)-to-RLN anastomosis. Group C included seven patients whose RLN was preserved. RESULTS: The videostroboscopic analysis and voice assessment collectively indicated substantial improvements in voice quality for patients in Groups A and B one year post-surgery. Additionally, the shaving technique maintained a normal or near-normal voice in Group C one year post-surgery. CONCLUSION: The new intraoperative phonosurgical strategy is as follows: Resection of the affected RLN and arytenoid adduction is required in cases of medullary or anaplastic carcinoma, regardless of preoperative RLN function. Suppose RLN is found infiltrated by well-differentiated thyroid cancer (WDTC) during surgery, and the RLN is preoperatively paralyzed, we recommend performing resection the involved RLN and ACN-to-RLN anastomosis immediately during surgery. If vocal folds exhibit normal mobility preoperatively, the MACIS scoring system is used to assess patient risk stratification. When the MACIS score > 6.99, resection of the involved RLN and immediate ACN-to-RLN anastomosis were performed. RLN preservation was limited to patients with MACIS scores ≤ 6.99.


Subject(s)
Recurrent Laryngeal Nerve , Thyroid Neoplasms , Thyroidectomy , Humans , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Male , Female , Middle Aged , Adult , Recurrent Laryngeal Nerve/surgery , Thyroidectomy/methods , Vocal Cord Paralysis/etiology , Vocal Cord Paralysis/surgery , Aged , Voice Quality , Neoplasm Invasiveness/pathology , Treatment Outcome
18.
Oncogene ; 43(21): 1594-1607, 2024 May.
Article in English | MEDLINE | ID: mdl-38565944

ABSTRACT

Prostate cancer (PCa) remains a significant cause of morbidity and mortality among men worldwide. A number of genes have been implicated in prostate tumorigenesis, but the mechanisms underlying their dysregulation are still incompletely understood. Evidence has established the competing endogenous RNA (ceRNA) theory as a novel regulatory mechanism for post-transcriptional alterations. Yet, a comprehensive characterization of ceRNA network in PCa lacks. Here we utilize stringent in-silico methods to construct a large ceRNA network across different PCa stages, and provide experimental demonstration for the competing regulation among protumorigenic SEC23A, PHTF2, and their corresponding ceRNA pairs. Using machine learning, we establish a ceRNA-based signature (ceRNA_sig) predictive of androgen receptor (AR) activity, tumor aggressiveness, and patient outcomes. Importantly, we identify miR-375 as a key node in PCa ceRNA network, which is upregulated in PCa relative to normal tissues. Forced expression of miR-375 significantly inhibits, while its inhibition promotes, aggressive behaviors of both AR+ and AR- PCa cells in vitro and in vivo. Mechanistically, we show that miR-375 predominantly targets genes possessing oncogenic roles (e.g., proliferation, DNA repair, and metastasis), and thus release targets with tumor suppressive functions. This action model well clarifies why an upregulated miRNA plays a tumor suppressive role in PCa. Together, our study provides new insights into understanding of transcriptomic aberrations during PCa evolution, and nominates miR-375 as a potential therapeutic target for combating aggressive PCa.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Prostatic Neoplasms , MicroRNAs/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Male , Mice , Animals , Up-Regulation/genetics , Cell Line, Tumor , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Genes, Tumor Suppressor , Cell Proliferation/genetics , RNA, Competitive Endogenous
19.
Front Public Health ; 12: 1295531, 2024.
Article in English | MEDLINE | ID: mdl-38633228

ABSTRACT

Objective: The aim of this study was to evaluate the present status of self-management behavior and glycemic control in individuals diagnosed with Type 2 Diabetes Mellitus (T2D), as well as to examine the impact of health quotient (HQ) and time management skills on both self-management behavior and glycemic control. Methods: Between October 2022 and March 2023, a purposive sampling method had been utilized to select 215 participants with type T2D. The survey concluded a general information questionnaire, an HQ scale, a diabetes time management questionnaire and a self-management behavior questionnaire. The health quotient(HQ)encompasses the individuals' knowledge, attitude toward health, and the ability to maintain their own well-being. The diabetes time management questionnaire was reverse-scored, with higher scores indicating an enhanced competence in time management. The path among variables was analyzed using structural equation modeling(SEM). Results: SEM showed that the direct effect of HQ on time management was -0.566 (p < 0.05), the direct effect of time management on the effect of self-management was -0.617 (p < 0.05), the direct effect of HQ on self-management was 0.156, and the indirect effect was 0.349 (p < 0.05); the relationship between health quotient and self-management was partially mediated by time management, with a mediating effect size of 68.8%. In addition, self-management had a direct effect on HbAlc, with a size of -0.394 (p < 0.05); The impacts of both HQ and time management on HbAlc were found to be mediated by self-management, with HQ demonstrating an indirect effect of -0.199 (p < 0.05) and time management showing an indirect effect of 0.244 (p < 0.05). Conclusion: Health quotient and time management in patients with T2D serve as catalysts for self-management behavior. They affect HbAlc level indirectly through self-management practices. The suggestion is to prioritize the cultivation of rational time organization and management skills in T2D patients, as well as enhance their health quotient level. This can facilitate a more effective improvement in patients' self-management behaviors, ultimately achieving the objective of maintaining optimal glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Self-Management , Humans , Self-Management/methods , Time Management , Glycemic Control , Blood Glucose
20.
Healthcare (Basel) ; 12(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610224

ABSTRACT

(1) Background: Digital medicine is developing in the management of chronic diseases in older people, but there is still a lack of information on the use of disease management apps in older patients with COPD. This study aims to explore the views and experience of older patients with COPD on disease management apps to provide a basis for the development and promotion of apps for geriatric diseases. (2) Methods: A descriptive qualitative research method was used. Older patients with COPD (N = 32) with experience using disease management apps participated in semi-structured interviews. Thematic analysis was used to analyze the data. (3) Results: Seven themes were defined: (a) feeling curious and worried when facing disease management apps for the first time; (b) actively overcoming barriers to use; (c) gradually becoming independent by continuous online learning; (d) feeling safe in the virtual environment; (e) gradually feeling new value in online interactions; (f) relying on disease management apps under long-term use; (g) expecting disease management apps to meet personalized needs. (4) Conclusions: The adoption and use of disease management apps by older people is a gradual process of acceptance, and they can obtain a wide range of benefits in health and life.

SELECTION OF CITATIONS
SEARCH DETAIL