Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 21(8): 1232-42, 2016 08.
Article in English | MEDLINE | ID: mdl-27140035

ABSTRACT

Secondary pharmacology is an essential component of drug discovery and is used extensively in the pharmaceutical industry for achieving optimal specificity of new drugs via early hazard identification and off-target mitigation. The importance of this discipline has been achieved by increasing its translational value, based on the recognition of biological target-drug molecule-adverse drug reaction (ADR) associations and integration of secondary pharmacology data with pharmacokinetic parameters. Information obtained from clinical ADRs, from recognition of specific phenotypes of animal models and from hereditary diseases provides increasing regulatory confidence in the target-based approach to ADR prediction and mitigation. Here, we review the progress of secondary pharmacology during the past decade and highlight and demonstrate its applications and impact in drug discovery.


Subject(s)
Drug Evaluation, Preclinical , Translational Research, Biomedical/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmacology/methods
2.
Nat Chem Biol ; 11(12): 958-66, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26479441

ABSTRACT

High-throughput screening (HTS) is an integral part of early drug discovery. Herein, we focused on those small molecules in a screening collection that have never shown biological activity despite having been exhaustively tested in HTS assays. These compounds are referred to as 'dark chemical matter' (DCM). We quantified DCM, validated it in quality control experiments, described its physicochemical properties and mapped it into chemical space. Through analysis of prospective reporter-gene assay, gene expression and yeast chemogenomics experiments, we evaluated the potential of DCM to show biological activity in future screens. We demonstrated that, despite the apparent lack of activity, occasionally these compounds can result in potent hits with unique activity and clean safety profiles, which makes them valuable starting points for lead optimization efforts. Among the identified DCM hits was a new antifungal chemotype with strong activity against the pathogen Cryptococcus neoformans but little activity at targets relevant to human safety.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Drug Discovery , High-Throughput Screening Assays , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
3.
ACS Chem Biol ; 9(7): 1622-31, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24802392

ABSTRACT

Computational target prediction methods using chemical descriptors have been applied exhaustively in drug discovery to elucidate the mechanisms-of-action (MOAs) of small molecules. To predict truly novel and unexpected small molecule-target interactions, compounds must be compared by means other than their chemical structure alone. Here we investigated predictions made by a method, HTS fingerprints (HTSFPs), that matches patterns of activities in experimental screens. Over 1,400 drugs and 1,300 natural products (NPs) were screened in more than 200 diverse assays, creating encodable activity patterns. The comparison of these activity patterns to an MOA-annotated reference panel led to the prediction of 5,281 and 2,798 previously unknown targets for the NP and drug sets, respectively. Intriguingly, there was limited overlap among the targets predicted; the drugs were more biased toward membrane receptors and the NPs toward soluble enzymes, consistent with the idea that they represent unexplored pharmacologies. Importantly, HTSFPs inferred targets that were beyond the prediction capabilities of standard chemical descriptors, especially for NPs but also for the more explored drug set. Of 65 drug-target predictions that we tested in vitro, 48 (73.8%) were confirmed with AC50 values ranging from 38 nM to 29 µM. Among these interactions was the inhibition of cyclooxygenases 1 and 2 by the HIV protease inhibitor Tipranavir. These newly discovered targets that are phylogenetically and phylochemically distant to the primary target provide an explanation for spontaneous bleeding events observed for patients treated with this drug, a physiological effect that was previously difficult to reconcile with the drug's known MOA.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Databases, Pharmaceutical , Humans , Models, Molecular , Molecular Targeted Therapy , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...