Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Med Primatol ; 53(5): e12734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39245882

ABSTRACT

A captive 17-year-old male cynomolgus monkey (Macaca fascicularis) developed diffuse large B-cell lymphoma (DLBCL). This was the first report of DLBCL presenting with a mandible mass and violation of the paranasal sinus in a cynomolgus monkey. The neoplasm showed marked microscopical malignant aspects. Immunohistochemical staining showed strong positive expression of CD20. These features may contribute to the diagnosis and therapeutics of DLBCL in NHPs.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Macaca fascicularis , Monkey Diseases , Animals , Male , Lymphoma, Large B-Cell, Diffuse/veterinary , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Monkey Diseases/pathology , Monkey Diseases/diagnosis
2.
Microorganisms ; 12(8)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39203385

ABSTRACT

Carbon capture, utilization, and storage (CCUS) is an important component in many national net-zero strategies, and ensuring that CO2 can be safely and economically stored in geological systems is critical. Recent discoveries have shown that microbial processes (e.g., methanogenesis) can modify fluid composition and fluid dynamics within the storage reservoir. Oil reservoirs are under high pressure, but the influence of pressure on the petroleum microbial community has been previously overlooked. To better understand microbial community dynamics in deep oil reservoirs, we designed an experiment to examine the effect of high pressure (12 megapascals [MPa], 60 °C) on nitrate-reducing, sulfate-reducing, and methanogenic enrichment cultures. Cultures were exposed to these conditions for 90 d and compared with a control exposed to atmospheric pressure (0.1 MPa, 60 °C). The degradation characteristic oil compounds were confirmed by thin-layer analysis of oil SARA (saturates, aromatics, resins, and asphaltenes) family component rods. We found that the asphaltene component in crude oil was biodegraded under high pressure, but the concentration of asphaltenes increased under atmospheric pressure. Gas chromatography analyses of saturates showed that short-chain saturates (C8-C12) were biodegraded under high and atmospheric pressure, especially in the methanogenic enrichment culture under high pressure (the ratio of change was -81%), resulting in an increased relative abundance of medium- and long-chain saturates. In the nitrate-reducing and sulfate-reducing enrichment cultures, long-chain saturates (C22-C32) were biodegraded in cultures exposed to high-pressure and anaerobic conditions, with a ratio of change of -8.0% and -2.3%, respectively. However, the relative proportion of long-chain saturates (C22-C32) increased under atmospheric pressure. Gas Chromatography Mass Spectrometry analyses of aromatics showed that several naphthalene series compounds (naphthalene, C1-naphthalene, and C2-naphthalene) were biodegraded in the sulfate-reducing enrichment under both atmospheric pressure and high pressure. Our study has discerned the linkages between the biodegradation characteristics of crude oil and pressures, which is important for the future application of bioenergy with CCUS (bio-CCUS).

3.
Chem Sci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39184299

ABSTRACT

Finding new birefringent materials with deep-ultraviolet (DUV, λ < 200 nm) transparency is urgent, as current commercial materials cannot meet the rapidly growing demands in related application fields. Herein, three guanidinium-based compounds, C(NH2)3CH3SO3, ß-C(NH2)3Cl, and γ-C(NH2)3Cl, all featuring [C(NH2)3·X]∞ (X = CH3SO3 and Cl) pseudo layers, were designed through structural motif tailoring. Theoretical calculations indicate that these metal-free compounds all possess broad bandgaps (6.49-6.71 eV, HSE06) and remarkable birefringence (cal. 0.166-0.211 @ 1064 nm). Centimeter-sized C(NH2)3CH3SO3 crystals have been grown using a feasible aqua-solution method. Subsequently, to further optimize the properties, ß/γ-C(NH2)3Cl was remolded by further tailoring the [C(NH2)3]+ cationic unit and the acceptor Cl- anion, and then the fourth compound NH2COF was theoretically constructed. Interestingly, NH2COF exhibits the desired coexistence of a wider bandgap (7.87 eV, HSE06) and giant birefringence (cal. 0.241 @ 1064 nm) attributed to its higher density of well-aligned birefringence-active groups (BAGs). Furthermore, among these four designed compounds, C(NH2)3CH3SO3 has been experimentally synthesized and exhibits a short UV cutoff edge. Centimeter-sized crystals have been grown using a feasible aqueous solution method. This study provides an effective strategy to optimize the density of BAGs for large birefringence and offers valuable insights into the strategic design of metal-free DUV birefringent crystals.

4.
Fitoterapia ; 178: 106157, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098735

ABSTRACT

The fruits of Alpinia oxyphylla (Alpiniae Oxyphyllae Fructus, AOF) are one of the "Four Famous South Medicines" in China. In this study, beta-site amyloid protein precursor cleaving enzyme 1 (BACE1) was applied to explore the active components in AOF responsible for type 2 diabetes mellitus (T2DM)-related cognitive disorder. As a result, 24 compounds including three unreported ones (1, 3, 4) were isolated from AOF. Compound 1 is an unusual carbon­carbon linked diarylheptanoid dimer, and compound 4 is the first case of 3,4-seco-eudesmane sesquiterpenoid with a 5/6-bicyclic skeleton. Four diarylheptanoids (3, 5-7), one flavonoid (9) and two sesquiterpenoids (14 and 20) showed BACE1 inhibitory activity, of which the most active 6 was revealed to be a non-competitive and anti-competitive mixed inhibitor. Docking simulation suggested that OH-4' of 6 played important roles in maintaining activity by forming hydrogen bonds with Ser36 and Ile126 residues. Compounds 3, 5, 9 and 20 displayed neuroprotective effects against amyloid ß (Aß)-induced damage in BV2 cells. Mechanism study revealed that compounds 5 and 20 downregulated the expression of BACE1 and upregulated the expression of Lamp2 to exert effects. Thus, the characteristic diarylheptanoids and sesquiterpenoids in AOF had the efficacy to alleviate T2DM-related cognitive disorder by inhibiting BACE1 activity and reversing Aß-induced neuronal damage.


Subject(s)
Alpinia , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Diabetes Mellitus, Type 2 , Fruit , Sesquiterpenes , Alpinia/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Fruit/chemistry , Molecular Structure , Diabetes Mellitus, Type 2/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Docking Simulation , Diarylheptanoids/pharmacology , Diarylheptanoids/isolation & purification , Diarylheptanoids/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Humans , Animals , China , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Cognition Disorders/drug therapy , Mice , Plant Extracts
5.
World J Clin Cases ; 12(20): 4091-4107, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015934

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM: To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS: In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS: First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION: The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.

6.
Fitoterapia ; 177: 106133, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067488

ABSTRACT

In order to develop antiviral drugs, we utilized pterodontic acid (Poa-1) as a lead compound and conducted various modifications, including oxidation, reduction, addition, esterification, and acylation, resulting in the synthesis of 29 derivatives, of which 25 were novel acylation derivatives. Cell-level validation demonstrated that 4 derivatives exhibited significant inhibitory effects on the influenza A virus (H1N1), with an IC50 = 4.04-36.13 µM. Notably, four acylation derivatives (compounds IIE5, IIE6, IIE9, and IIE17) exhibited specific antiviral activities against influenza A virus (H1N1) with low cytotoxicity, indicating favorable therapeutic indices (SI = 3.5-11.9). Structure-activity relationship studies indicated that C5-C6 olefins are essential groups for antiviral activity, C11-C12 conjugated olefins will not interfere with antiviral activity. Carboxylic acid is an essential group for activity. Moreover,Carboxylic acid acylation can improve antiviral activity, and the inclusion of guanidine, cyclic amine, and phenyl groups with electron-donating substituents could enhance the antiviral activity of the lead compound. Natural products structural modifications are capable of improving the biological activity of lead compounds, offering a rapid pathway for the development of potent new structures.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Structure-Activity Relationship , Influenza A Virus, H1N1 Subtype/drug effects , Molecular Structure , Acylation , Animals , Dogs , Madin Darby Canine Kidney Cells , Humans
7.
Front Pharmacol ; 15: 1413699, 2024.
Article in English | MEDLINE | ID: mdl-38915471

ABSTRACT

The clinical application and biological function of interferon regulatory factor 1 (IRF1) in non-small cell lung cancer (NSCLC) patients undergoing chemoimmunotherapy remain elusive. The aim of this study was to investigate the predictive and prognostic significance of IRF1 in NSCLC patients. We employed the cBioPortal database to predict frequency changes in IRF1 and explore its target genes. Bioinformatic methods were utilized to analyze the relationship between IRF1 and immune regulatory factors. Retrospective analysis of clinical samples was conducted to assess the predictive and prognostic value of IRF1 in chemoimmunotherapy. Additionally, A549 cells with varying IRF1 expression levels were constructed to investigate its effects on NSCLC cells, while animal experiments were performed to study the role of IRF1 in vivo. Our findings revealed that the primary mutation of IRF1 is deep deletion and it exhibits a close association with immune regulatory factors. KRAS and TP53 are among the target genes of IRF1, with interferon and IL-2 being the predominantly affected pathways. Clinically, IRF1 levels significantly correlate with the efficacy of chemoimmunotherapy. Patients with high IRF1 levels exhibited a median progression-free survival (mPFS) of 9.5 months, whereas those with low IRF1 levels had a shorter mPFS of 5.8 months. IRF1 levels positively correlate with PD-L1 distribution and circulating IL-2 levels. IL-2 enhances the biological function of IRF1 and recapitulates its role in vivo in the knockdown group. Therefore, IRF1 may possess predictive and prognostic value for chemoimmunotherapy in NSCLC patients through the regulation of the IL-2 inflammatory pathway.

8.
Plant J ; 119(5): 2151-2167, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852163

ABSTRACT

Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Saccharum , Whole Genome Sequencing , Saccharum/genetics , Polymorphism, Single Nucleotide/genetics , Genome, Plant/genetics , Plant Breeding , Sucrose/metabolism , Quantitative Trait Loci/genetics , Phenotype
9.
Fitoterapia ; 177: 106077, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906387

ABSTRACT

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).


Subject(s)
Antiviral Agents , Coronavirus OC43, Human , Flavonoids , Humans , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Chromatography, Liquid , Molecular Structure , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Tandem Mass Spectrometry , Cell Line, Tumor , Coronavirus 3C Proteases/antagonists & inhibitors , Biological Products/pharmacology , Biological Products/isolation & purification , Biological Products/chemistry
10.
Fitoterapia ; 175: 105980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685510

ABSTRACT

Forty-three diarylheptanoids were isolated from Alpinia officinarum rhizomes among them eight ones (1-6) were undescribed compounds whose structures were identified by UV, IR, HRESIMS, and NMR. The neuroprotective effects of these diarylheptanoids were evaluated on H2O2-damaged SH-SY5Y cells. Compounds 7, 10, 12, 20, 22, 25, 28, 33, 35, 37, and 42 presented significant neuroprotective effects than that of the positive control (EGCG) at the concentrations of 5, 10 or 20 µM. Compounds 10, 22, 25, and 33 significantly reduced the ROS levels and inhibited the generations of MDA and NO in oxidative injured cells to display neuroprotective effects. This study lay the foundation for the application of Alpinia officinarum rhizomes.


Subject(s)
Alpinia , Diarylheptanoids , Neuroprotective Agents , Rhizome , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Diarylheptanoids/pharmacology , Diarylheptanoids/isolation & purification , Diarylheptanoids/chemistry , Rhizome/chemistry , Alpinia/chemistry , Molecular Structure , Humans , Cell Line, Tumor , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Reactive Oxygen Species/metabolism , China , Oxidative Stress/drug effects , Nitric Oxide/metabolism
11.
JACC Basic Transl Sci ; 9(3): 380-395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38559624

ABSTRACT

To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.

12.
Fitoterapia ; 174: 105866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378134

ABSTRACT

A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,ß-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 µM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.


Subject(s)
Diterpenes , Rosmarinus , Abietanes/pharmacology , Abietanes/chemistry , Rosmarinus/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Diterpenes/pharmacology , Diterpenes/chemistry
13.
Brain Sci ; 14(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38248303

ABSTRACT

Calcium and iron are essential elements that regulate many important processes of eukaryotic cells. Failure to maintain homeostasis of calcium and iron causes cell dysfunction or even death. PD (Parkinson's disease) is the second most common neurological disorder in humans, for which there are currently no viable treatment options or effective strategies to cure and delay progression. Pathological hallmarks of PD, such as dopaminergic neuronal death and intracellular α-synuclein deposition, are closely involved in perturbations of iron and calcium homeostasis and accumulation. Here, we summarize the mechanisms by which Ca2+ signaling influences or promotes PD progression and the main mechanisms involved in ferroptosis in Parkinson's disease. Understanding the mechanisms by which calcium and iron imbalances contribute to the progression of this disease is critical to developing effective treatments to combat this devastating neurological disorder.

14.
Org Lett ; 26(4): 971-976, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38265233

ABSTRACT

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of actinobacterial secondary metabolites that display a broad spectrum of biological activities. Here, we present a genome mining approach targeting cyclase and is isomerase to discover new CCNPs, which led to the identification of 207 putative CCNP gene clusters from public bacterial genome databases. After strain prioritization, a novel class of CCNP-type glycopeptides named malacinnamycin was identified. A plausible biosynthetic pathway for malacinnamycin was deduced by bioinformatics analysis.


Subject(s)
Computational Biology , Peptides , Biosynthetic Pathways/genetics , Genome, Bacterial , Multigene Family , Cinnamates/chemistry
15.
J Am Chem Soc ; 146(6): 3640-3645, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38294831

ABSTRACT

We report the discovery of a novel form of Ruddlesden-Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a "1313" sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa.

16.
Protein Cell ; 15(3): 207-222, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37758041

ABSTRACT

Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.


Subject(s)
Pluripotent Stem Cells , Primates , Animals , Macaca fascicularis , Cell Engineering , Embryonic Development
17.
CNS Neurosci Ther ; 30(2): e14381, 2024 02.
Article in English | MEDLINE | ID: mdl-37519114

ABSTRACT

AIM: To develop and validate a novel weighted score integrating multisystem laboratory and clinical variables to predict poor 3-month outcome (mRS score of 3-6) in acute ischemic stroke (AIS) patients with intravenous thrombolysis (IVT) therapy. METHODS: We retrospectively analyzed data from Trial of Revascularization Treatment for Acute Ischemic Stroke study. The Supra-Blan2 t score was derived using the data on age, the National Institutes of Health Stroke Scale score, history of atrial fibrillation, blood sugar level, neutrophil count, direct bilirubin level, platelet-lymphocyte ratio, and TnI level in the derivation cohort of 433 patients, and validated in a cohort of 525 patients. Furthermore, we compared the performance of the Supra-Blan2 t score with DRAGON, TURN, and SPAN-100 scores. RESULTS: The discrimination capacity in the derivation and validation cohorts was good for poor 3-month outcome (the area under the curve was 0.821 and 0.843, respectively). The cumulative incidence of poor 3-month outcome significantly increased across risk categories in the derivation (low-risk, 9.2%; medium-risk, 17.4%; and high-risk, 58.8%) and validation cohorts (12.7%, 36.5%, and 73.6%, respectively). The performance of the Supra-Blan2 t score was similar to or superior to DRAGON, TURN, and SPAN-100 scores. CONCLUSION: The Supra-Blan2 t score, based on easily available multisystem laboratory and clinical variables, reliably predicted poor 3-month functional outcome in AIS patients treated with IVT therapy featuring good calibration and discrimination.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Stroke/diagnostic imaging , Stroke/drug therapy , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/drug therapy , Retrospective Studies , Risk Factors , Thrombolytic Therapy , Treatment Outcome , Fibrinolytic Agents/therapeutic use , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy
18.
Sci Total Environ ; 905: 167147, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37730067

ABSTRACT

Shale gas extraction process generates a large amount of shale gas flowback wastewater (SGFW) containing refractory organic compounds, which can pose serious environmental threats if not properly treated. However, the extremely complex compositions of organics in SGFW are still unknown and their transformation pathways in O3- and •OH-dominated systems are not well recognized, which restrain the selection of treatment technology and optimization of operational parameters. The removal characteristics and reaction mechanism of dissolved organic matter (DOM) in SGFW treated by ozonation and Fenton processes were comparatively investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results showed that both processes could degrade low-oxygen highly unsaturated and phenolic organics, polyphenolics and polycyclic aromatics, and transform them into aliphatic organics and high-oxygen highly unsaturated and phenolic organics. With increasing action of reactive oxygen species (O3 for ozonation and •OH for Fenton process), the degradation products (mainly aliphatic organics) increased during ozonation. However, in Fenton process, a wider range of DOM was removed without aliphatic organics accumulation. The degradation mechanisms of DOM during ozonation and Fenton processes included oxygen addition reactions (+3O, +H2O2, and +2O) as dominant pathways. However, ozonation showed more violent oxygenation, hydroxylation, and carboxylation, while Fenton process presented more violent chain-breaking reactions. These results revealed the selective oxidation of ozone and nonselective oxidation of •OH during SGFW treatment, and provided theoretical support for selecting SGFW treatment approaches.

19.
Sci Total Environ ; 893: 164793, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37315595

ABSTRACT

Both normal activities and accidental spills in the petroleum industry generate solid waste that contain petroleum-contaminated pollutants (referred to as "petroleum-contaminated solid waste"), which mainly include petroleum-contaminated soil, petroleum sludge, and petroleum-based drill cuttings. At present, most relevant studies focus solely on the treatment effects of the Fenton system alone in treating a specific type of petroleum-contaminated solid waste, and systematic studies on the influencing factors, degradation pathways, and applicability of the system are lacking. For this reason, this paper reviews the application and development of the Fenton system to treat petroleum-contaminated solid waste in the period from 2010 to 2021 and summarizes its basic properties. It also compares the influencing factors (e.g., Fenton reagent dosage, initial pH, and catalyst properties), degradation mechanisms, and reagent costs of conventional Fenton, heterogeneous Fenton, chelate-modified Fenton, and electro-Fenton systems for the treatment of petroleum-contaminated solid waste. In addition, the main degradation pathways and intermediate toxicities of typical petroleum hydrocarbons in Fenton systems are analyzed and evaluated, and development directions for the further application of Fenton systems in treating petroleum-contaminated solid waste are proposed.

20.
Neurobiol Dis ; 184: 106197, 2023 08.
Article in English | MEDLINE | ID: mdl-37328037

ABSTRACT

Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Macaca fascicularis/genetics , Macaca fascicularis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Proteomics , Proteins/genetics , DNA Repeat Expansion , Dipeptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL