Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Dig Liver Dis ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39043536

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth (SIBO) share similar abdominal symptoms; however, their differentiation remains controversial. AIMS: To illustrate the differences between the two conditions. METHODS: Patients and healthy controls completed questionnaires and provided stool samples for analysis. RESULTS: IBS presented with the most severe symptoms and was specifically characterized by intense abdominal pain and frequent episodes of diarrhea. Patients with IBS displayed more dysregulated taxonomy within the fecal microbiota than SIBO. Opportunistic pathogens, including Lachnoclostridium, Escherichia-Shigella, and Enterobacter were enriched in the IBS group which contributed to increased bacterial pathogenicity and positively correlated with abdominal pain and bloating, meanwhile, Lachnoclostridium and Escherichia-Shigella were found to be associated with metabolites affiliated to bile acids, alcohols and derivatives. Bacteria enriched in SIBO group correlated with constipation. The bacterial co-occurrence network within the SIBO group was the most intricate. Ruminococcaceae Group were defined as core bacteria in SIBO. Differential metabolites affiliated to androstane steroids and phenylacetic acids were associated with core bacteria. CONCLUSIONS: Our study elucidates the differences between IBS and SIBO in terms of symptoms, microbiota and functions, which provides insights into a better understanding of both diseases and evidence for different treatment strategies.

2.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031471

ABSTRACT

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Subject(s)
Cell Hypoxia , Tight Junction Proteins , Tight Junctions , Urothelium , Humans , Urothelium/metabolism , Urothelium/pathology , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Cell Line , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Occludin/metabolism , Occludin/genetics , Claudin-1/metabolism , Claudin-1/genetics , Electric Impedance , Gene Expression Regulation
3.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979368

ABSTRACT

Cancers evolve in a dynamic ecosystem. Thus, characterizing cancer's ecological dynamics is crucial to understanding cancer evolution and can lead to discovering novel biomarkers to predict disease progression. Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal epithelial cell growth confined within the milk ducts. Although there has been extensive research on genetic and epigenetic causes of breast carcinogenesis, none of these studies have successfully identified a biomarker for the progression and/or upstaging of DCIS. In this study, we show that ecological habitat analysis of hypoxia and acidosis biomarkers can significantly improve prediction of DCIS upstaging. First, we developed a novel eco-evolutionary designed approach to define habitats in the tumor intra-ductal microenvironment based on oxygen diffusion distance in our DCIS cohort of 84 patients. Then, we identify cancer cells with metabolic phenotypes attributed to their habitat conditions, such as the expression of CA9 indicating hypoxia responding phenotype, and LAMP2b indicating a hypoxia-induced acid adaptation. Traditionally these markers have shown limited predictive capabilities for DCIS upstaging, if any. However, when analyzed from an ecological perspective, their power to differentiate between indolent and upstaged DCIS increased significantly. Second, using eco-evolutionary guided computational and digital pathology techniques, we discovered distinct spatial patterns of these biomarkers and used the distribution of such patterns to predict patient upstaging. The patterns were characterized by both cellular features and spatial features. With a 5-fold validation on the biopsy cohort, we trained a random forest classifier to achieve the area under curve(AUC) of 0.74. Our results affirm the importance of using eco-evolutionary-designed approaches in biomarkers discovery studies in the era of digital pathology by demonstrating the role of eco-evolution dynamics in predicting cancer progression.

4.
Eur J Med Chem ; 276: 116670, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39018922

ABSTRACT

Development of resistance to therapy-induced cell death is a major hurdle in the effective treatment of advanced solid tumors. Erastin and RSL3 were originally found to induce synthetic lethality by induction of a novel form of cell death termed ferroptosis. Emerging evidence suggests that ferroptosis inducers enhance chemosensitivity of classic therapeutic agents by triggering ferroptotic cell death. In this study we evaluated the effects of erastin and RSL3 on the resistance of docetaxel, doxorubicin, and cisplatin, and revealed a mechanism whereby these ferroptosis inducers augment docetaxel efficacy in non-small cell lung cancer by regulating redox signaling to promote ferroptosis. Transcriptome analysis revealed that combination treatment modulated not only p53 signaling pathway but also immune responses and several signaling pathways including MAPK, NF-κB and PI3K/Akt. Considering that glutathione peroxidase 4 (GPX4) serves as the main effector to protect cells from ferroptosis, this study identified three novel non-covalent GPX4 inhibitors with the aid of pharmacophore-based virtual screening. The new ferroptosis-inducing compounds synergized with docetaxel to increase the cytotoxicity by promoting ferroptotic cell death in docetaxel-resistant A549/DTX cells. Collectively, the induction of ferroptosis contributed to docetaxel-induced cytotoxic effects and overcame drug resistance in A549/DTX cells. Ferroptosis has a great potential to become a new approach to attenuate resistance to some classic therapeutic drugs in cancer patients.

5.
Sensors (Basel) ; 24(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931628

ABSTRACT

The Taiji program is dedicated to the detection of middle and low-frequency gravitational waves, targeting the 0.1 mHz to 1 Hz frequency band. The project requires an acceleration residual sensitivity of 3 × 10-15 ms-2/Hz1/2, which necessitates a capacitance sensing resolution of 1 aF/Hz1/2 for the capacitive sensing system within the specified frequency range. The noise level of the resonant bridge significantly influences the resolution. Addressing the challenges in enhancing transformer performance parameters in existing resonant capacitance bridges and the constraints on improving the characteristics of resonant capacitance bridges, this study introduces a novel approach to reduce bridge thermal noise without optimizing existing parameters. The simulation results demonstrate that this scheme can reduce the noise to 0.7 times the original level and further reduce bridge thermal noise when other parameters affecting noise are optimized. This not only mitigates the demands for other performance parameters but also increases the range of maximum acceptable resonant frequency deviations and reduces its sensitivity to such variations. Experimental validation confirms that the proposed scheme effectively reduces noise by 0.7 times and improves the resolution of capacitance sensing to 0.6 aF/Hz1/2, thereby advancing the Taiji program gravitational wave detection capabilities.

6.
Sci Rep ; 14(1): 11776, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782999

ABSTRACT

This study aimed to explore the gut microbiota characteristics of ischemic and hemorrhagic stroke patients. A case-control study was conducted, and high-throughput sequencing of the V4-V5 region of 16S rRNA was used to analyze the differences in gut microbiota. The results showed that Proteobacteria was significantly increased in the ischemic stroke group compared with the healthy control group, while Fusobacteria was significantly increased in the hemorrhagic stroke group. In the ischemic stroke group, Butyricimonas, Alloprevotella, and Escherichia were significantly more abundant than in the healthy control group. In the hemorrhagic stroke group, Atopobium, Hungatella, Eisenbergiella, Butyricimonas, Odonbacter, Lachnociostridium, Alistipes, Parabacteroides, and Fusobacterium were significantly more abundant than in the healthy control group. Additionally, Alloprevotella, Ruminococcus, and Prevotella were significantly more abundant in the ischemic stroke group than in the hemorrhagic stroke group. The gut microbiota of ischemic and hemorrhagic stroke patients has significant diversity characteristics. These results provide new theoretical basis for exploring the prevention and treatment of different types of stroke through gut microbiota research.


Subject(s)
Gastrointestinal Microbiome , Hemorrhagic Stroke , Ischemic Stroke , RNA, Ribosomal, 16S , Humans , Ischemic Stroke/microbiology , Male , Hemorrhagic Stroke/microbiology , Female , Case-Control Studies , Middle Aged , RNA, Ribosomal, 16S/genetics , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing
7.
J Transl Med ; 22(1): 496, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796441

ABSTRACT

BACKGROUND: Small intestinal bacterial overgrowth (SIBO) is the presence of an abnormally excessive amount of bacterial colonization in the small bowel. Hydrogen and methane breath test has been widely applied as a non-invasive method for SIBO. However, the positive breath test representative of bacterial overgrowth could also be detected in asymptomatic individuals. METHODS: To explore the relationship between clinical symptoms and gut dysbiosis, and find potential fecal biomarkers for SIBO, we compared the microbial profiles between SIBO subjects with positive breath test but without abdominal symptoms (PBT) and healthy controls (HC) using 16S rRNA amplicon sequencing. RESULTS: Fecal samples were collected from 63 SIBO who complained of diarrhea, distension, constipation, or abdominal pain, 36 PBT, and 55 HC. For alpha diversity, the Shannon index of community diversity on the genus level showed a tendency for a slight increase in SIBO, while the Shannon index on the predicted function was significantly decreased in SIBO. On the genus level, significantly decreased Bacteroides, increased Coprococcus_2, and unique Butyrivibrio were observed in SIBO. There was a significant positive correlation between saccharolytic Coprococcus_2 and the severity of abdominal symptoms. Differently, the unique Veillonella in the PBT group was related to amino acid fermentation. Interestingly, the co-occurrence network density of PBT was larger than SIBO, which indicates a complicated interaction of genera. Coprococcus_2 showed one of the largest betweenness centrality in both SIBO and PBT microbiota networks. Pathway analysis based on the Kyoto Encyclopedia of Genes and Genome (KEGG) database reflected that one carbon pool by folate and multiple amino acid metabolism were significantly down in SIBO. CONCLUSIONS: This study provides valuable insights into the fecal microbiota composition and predicted metabolic functional changes in patients with SIBO. Butyrivibrio and Coprococcus_2, both renowned for their role in carbohydrate fermenters and gas production, contributed significantly to the symptoms of the patients. Coprococcus's abundance hints at its use as a SIBO marker. Asymptomatic PBT individuals show a different microbiome, rich in Veillonella. PBT's complex microbial interactions might stabilize the intestinal ecosystem, but further study is needed due to the core microbiota similarities with SIBO. Predicted folate and amino acid metabolism reductions in SIBO merit additional validation.


Subject(s)
Feces , Intestine, Small , Humans , Feces/microbiology , Female , Male , Intestine, Small/microbiology , Middle Aged , Adult , Breath Tests , Case-Control Studies , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics
8.
IEEE J Biomed Health Inform ; 28(6): 3523-3533, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557613

ABSTRACT

Germectomy is a common surgery in pediatric dentistry to prevent the potential dangers caused by impacted mandibular wisdom teeth. Segmentation of mandibular wisdom teeth is a crucial step in surgery planning. However, manually segmenting teeth and bones from 3D volumes is time-consuming and may cause delays in treatment. Deep learning based medical image segmentation methods have demonstrated the potential to reduce the burden of manual annotations, but they still require a lot of well-annotated data for training. In this paper, we initially curated a Cone Beam Computed Tomography (CBCT) dataset, NKUT, for the segmentation of pediatric mandibular wisdom teeth. This marks the first publicly available dataset in this domain. Second, we propose a semantic separation scale-specific feature fusion network named WTNet, which introduces two branches to address the teeth and bones segmentation tasks. In WTNet, We design a Input Enhancement (IE) block and a Teeth-Bones Feature Separation (TBFS) block to solve the feature confusions and semantic-blur problems in our task. Experimental results suggest that WTNet performs better on NKUT compared to previous state-of-the-art segmentation methods (such as TransUnet), with a maximum DSC lead of nearly 16%.


Subject(s)
Cone-Beam Computed Tomography , Databases, Factual , Deep Learning , Molar, Third , Humans , Child , Cone-Beam Computed Tomography/methods , Molar, Third/diagnostic imaging , Mandible/diagnostic imaging , Benchmarking/methods , Imaging, Three-Dimensional/methods , Algorithms
9.
Medicine (Baltimore) ; 103(14): e37692, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579050

ABSTRACT

Reperfusion therapy of acute myocardial infarction (AMI) refers to physical or chemical recanalization and restoration of blood flow to an occluded coronary artery, and current techniques for reperfusion therapy include intravenous thrombolysis, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The number of patients receiving emergency CABG in the real world is decreasing due to the disadvantages of CABG and the improvement in PCI procedures. Thrombolytic therapy has some disadvantages such as low recanalization rate, high risk of reocclusion and bleeding, and short time window. On the other hand, intracoronary interventional therapy may meet the requirements of "early, complete and persistent" patency of coronary arteries at different time points. However, in the emergency PCI, although thrombus aspiration via a catheter or balloon dilation is performed, residual thrombus with heavy or low TIMI (thrombolysis in myocardial infarction) myocardial perfusion grading is still observed in some patients, suggesting disordered microcirculation. Currently, the treatment of microcirculatory disturbance in emergency PCI mainly employed injection of tirofiban, adenosine, thrombolytic agent or other drugs into the local area via a microcatheter in a short time, all of which can significantly reduce the thrombus load and improve TIMI perfusion. Herein, we report that a microcatheter was indwelled in the coronary artery for continuous pumping of low-dose thrombolytic drugs as reperfusion therapy in 12 patients with acute and subacute MI.


Subject(s)
Angioplasty, Balloon, Coronary , Myocardial Infarction , Percutaneous Coronary Intervention , Thrombosis , Humans , Fibrinolytic Agents , Microcirculation , Angioplasty, Balloon, Coronary/methods , Myocardial Infarction/etiology , Thrombolytic Therapy/adverse effects , Reperfusion , Thrombosis/etiology , Treatment Outcome , Myocardial Reperfusion
10.
Int J Ophthalmol ; 17(2): 339-347, 2024.
Article in English | MEDLINE | ID: mdl-38371252

ABSTRACT

AIM: To explore the brain mechanism of acupuncture for children with anisometropic amblyopia using the voxel-mirror homotopic connectivity (VMHC) analysis method of resting functional magnetic resonance imaging (rs-fMRI) technology based on clinical effectiveness. METHODS: Eighty children with anisometropic monocular amblyopia were randomly divided into two groups: control (40 cases, 1 case of shedding) and acupuncture (40 cases, 1 case of shedding) groups. The control group was treated with glasses, red flash, grating, and visual stimulations, with each procedure conducted for 5min per time. Based on routine treatment, the acupuncture group underwent acupuncture of "regulating qi and unblocking meridians to bright eyes", Jingming (BL1), Cuanzhu (BL2), Guangming (GB37), Fengchi (GB20) acupoints were taken on both sides, with the needle kept for 30min each time. Both groups were treated once every other day, three times per week, for a total of 4wk. After the treatment, the overall curative effect of the two groups and the latency and amplitude changes of P100 wave of pattern visual-evoked potential were counted. At the same time, nine children with left eye amblyopia were randomly selected from the two groups and were scanned with rs-fMRI before and after treatment. The differences in the brain regions between the two groups were compared and analyzed with VMHC. RESULTS: Chi-square test showed a notable difference in the total efficiency rate between the acupuncture (94.87%) and control groups (79.49%). Regarding the P100 wave latency and amplitude, the acupuncture group had significantly shorter latency and higher amplitude of P100 wave than the control group. Moreover, the VMHC values of the bilateral temporal lobe, superior temporal gyrus, and middle temporal gyrus were notably increased in the acupuncture group after treatment. CONCLUSION: Acupuncture combined with conventional treatment can significantly improve the corrected visual acuity and optic nerve conduction in children with anisometropic amblyopia. Compared with the conventional treatment, the regulation of acupuncture on the functional activities of the relevant brain areas in the anterior cerebellum may be an effective acupuncture mechanism for anisometropic amblyopia.

11.
Front Psychiatry ; 15: 1279266, 2024.
Article in English | MEDLINE | ID: mdl-38352653

ABSTRACT

Objective: Potential causal associations between psychiatric disorders and irritable bowel syndrome have been demonstrated in observational studies; however, these studies are susceptible to underlying confounding and reverse causation biases. We aimed to assess the causal effects of psychiatric disorders on irritable bowel syndrome (IBS) and the potential mediators from a genetic perspective by conducting a Mendelian randomization (MR) study with mediation analysis. Method: Genetic instruments associated with psychiatric disorders, potential mediators, and IBS were obtained from large-scale genome-wide association studies (GWAS). Three MR methods - the inverse-variance weighted (IVW) method, MR-Egger method, and weighted median method, were used to investigate causal association estimates. Heterogeneity among different genetic instrumental variables (IVs) was assessed using Q tests. Additionally, the MR-PRESSO and MR-Pleiotropy methods were used to verify horizontal pleiotropy and detect outliers that might bias the results, which were removed from further analysis. Consequently, we used MR mediation analysis to investigate potential mediators in the causal associations between psychiatric disorders and IBS. Results: MR provided evidence of the causal effects of genetically predicted broad depression, major depressive disorder (MDD), anxiety disorder, post-traumatic stress disorder (PTSD), and schizophrenia on IBS. The results of MR mediation analysis demonstrated that the reduction in acetate levels mediated 12.6% of the effects of broad depression on IBS; insomnia mediated 16.00%, 16.20%, and 27.14% of the effects of broad depression, MDD, and PTSD on IBS, respectively; and the increase in blood ß-hydroxybutyrate levels mediated 50.76% of the effects of schizophrenia on IBS. Conclusion: Our study confirmed the brain-gut axis involvement and potential modulators in the pathophysiology of psychiatric disorder-induced IBS from a genetic perspective, and suggests potential therapeutic targets for the disrupted brain-gut axis.

12.
Int J Cardiol ; 400: 131821, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38301829

ABSTRACT

BACKGROUND: Non-culprit plaque progression is associated with recurrent cardiac ischemic events and worse clinical outcomes. Given that atherosclerosis is a systemic disease, the pancoronary characteristics of patients with rapid plaque progression are unknown. This study aims to identify pancoronary plaque features in patients with ST-segment elevation myocardial infarction (STEMI) with and without rapid plaque progression, focused on the patient level. METHODS AND RESULTS: From January 2017 to July 2019, 291 patients underwent 3-vessel optical coherence tomography imaging at the time of the primary procedure and a follow-up angiography interval of 12 months. The final analysis included 237 patients. Overall, 308 non-culprit lesions were found in 78 STEMI patients with rapid plaque progression, and 465 non-culprit plaques were found in 159 STEMI patients without rapid plaque progression. These patients had a higher pancoronary vulnerability (CLIMA-defined high-risk plaque: 47.4% vs. 33.3%; non-culprit plaque rupture: 25.6% vs. 14.5%) and a significantly higher prevalence of other vulnerable plaque characteristics (i.e., lipid-rich plaque, cholesterol crystal, microchannels, calcification, spotty calcification, and thrombus) at baseline versus those without rapid plaque progression. Lesions with rapid progression were highly distributed at the LAD, tending to be near the bifurcation. In multivariate analysis, age ≥ 65 years was an independent predictor of subsequent rapid lesion progression at the patient level, whereas microchannel, spotty calcification, and cholesterol crystal were independent predictors for STEMI patients ≥65 years old. CONCLUSIONS: STEMI patients with subsequent rapid plaque progression had higher pancoronary vulnerability and commonly presented vulnerable plaque morphology. Aging was the only predictor of subsequent rapid plaque progression.


Subject(s)
Plaque, Atherosclerotic , ST Elevation Myocardial Infarction , Humans , Aged , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/complications , Tomography, Optical Coherence/methods , Coronary Angiography , Plaque, Atherosclerotic/complications , Cholesterol , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology
13.
Sensors (Basel) ; 24(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339522

ABSTRACT

An inertial sensor is a crucial payload in China's Taiji program for space gravitational wave detection. The performance of the capacitive displacement sensing circuit in the low-frequency band (0.1 mHz to 1 Hz) is extremely important because it directly determines the sensitivity of the space gravitational wave detection missions. Therefore, significant, yet challenging, tasks include decreasing the low-frequency noise in capacitive displacement sensing circuits and improving the capacitive sensing resolution. This study analyzes the noise characteristics of the pre-amplifier circuit within the capacitive sensing circuit, achieves precise tuning of the transformer bridge, and examines how transformer parameters affect noise. In addition, this study introduces a method using a discrete JFET to reduce the operational amplifier current noise and analyzes how feedback resistance and capacitance in TIA circuits affect the overall circuit noise. The proportional relationship between different transformer noises and TIA noise before and after optimization was analyzed and experimentally verified. Finally, an optimized TIA circuit and a superior transformer were utilized to achieve an increase in the capacitive sensing resolution from 1.095 aF/rtHz @ 10 mHz to 0.84 aF/rtHz @ 10 mHz, while improving the performance by 23%. These findings provide valuable insights into further decreasing circuit noise and increasing the capacitive sensing resolution.

14.
Nanomicro Lett ; 16(1): 86, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214843

ABSTRACT

Improving the long-term cycling stability and energy density of all-solid-state lithium (Li)-metal batteries (ASSLMBs) at room temperature is a severe challenge because of the notorious solid-solid interfacial contact loss and sluggish ion transport. Solid electrolytes are generally studied as two-dimensional (2D) structures with planar interfaces, showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces. Herein, three-dimensional (3D) architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment. Multiple-type electrolyte films with vertical-aligned micro-pillar (p-3DSE) and spiral (s-3DSE) structures are rationally designed and developed, which can be employed for both Li metal anode and cathode in terms of accelerating the Li+ transport within electrodes and reinforcing the interfacial adhesion. The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm-2. The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm-2 (LFP) and 3.92 mAh cm-2 (NCM811). This unique design provides enhancements for both anode and cathode electrodes, thereby alleviating interfacial degradation induced by dendrite growth and contact loss. The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.

15.
Front Microbiol ; 14: 1291010, 2023.
Article in English | MEDLINE | ID: mdl-37915854

ABSTRACT

Selenium (Se) is an essential trace element that plays a vital role in various physiological functions of the human body, despite its small proportion. Due to the inability of the human body to synthesize selenium, there has been increasing concern regarding its nutritional value and adequate intake as a micronutrient. The efficiency of selenium absorption varies depending on individual biochemical characteristics and living environments, underscoring the importance of accurately estimating absorption efficiency to prevent excessive or inadequate intake. As a crucial digestive organ in the human body, gut harbors a complex and diverse microbiome, which has been found to have a significant correlation with the host's overall health status. To investigate the relationship between the gut microbiome and selenium absorption, a two-month intervention experiment was conducted among Chinese adult cohorts. Results indicated that selenium supplementation had minimal impact on the overall diversity of the gut microbiome but was associated with specific subsets of microorganisms. More importantly, these dynamics exhibited variations across regions and sequencing batches, which complicated the interpretation and utilization of gut microbiome data. To address these challenges, we proposed a hybrid predictive modeling method, utilizing refined gut microbiome features and host variable encoding. This approach accurately predicts individual selenium absorption efficiency by revealing hidden microbial patterns while minimizing differences in sequencing data across batches and regions. These efforts provide new insights into the interaction between micronutrients and the gut microbiome, as well as a promising direction for precise nutrition in the future.

16.
Sensors (Basel) ; 23(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005532

ABSTRACT

In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.

17.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38009916

ABSTRACT

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Subject(s)
Betacoronavirus 1 , Coronavirus Infections , Exocytosis , Lysosomes , Neurons , Animals , Mice , Betacoronavirus 1/metabolism , Lysosomes/enzymology , Lysosomes/metabolism , Lysosomes/virology , Murine hepatitis virus/metabolism , Neurons/enzymology , Neurons/metabolism , Neurons/pathology , Neurons/virology , SARS-CoV-2/metabolism , Swine/virology , Hydrogen-Ion Concentration , Vacuolar Proton-Translocating ATPases/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Coronavirus Infections/virology
18.
Cardiovasc Diabetol ; 22(1): 265, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775738

ABSTRACT

OBJECTIVE: Diabetes poses a significant threat to human health. There is a lack of large-scale cohort studies to explore the association between mortality risk and indicators beyond blood glucose monitoring in diabetic populations. METHODS: Multivariable Cox proportional hazards regression models were performed to investigate the association of 13 blood biomarkers with mortality risk in the National Health and Nutrition Examination Survey (NHANES) and biomarker levels were log-transformed and correlated with mortality. RESULTS: During a median follow-up of 7.42 years, 1783 diabetic patients were enrolled. Compared to traditional risk factors, the addition of hs-cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin C, and ß-2 microglobulin biomarkers increased the predictive ability for all-cause mortality by 56.4%, 29.5%, 38.1%, 18.8%, 35.7%, and 41.3%, respectively. However, the inclusion of blood glucose monitoring had no impact on the prediction of all-cause mortality. Compared with the 1st quartiles of creatinine and Cystatin C, the risk of diabetes mortality were higher in the highest quartiles (HR: 5.16, 95% CI: 1.87-14.22; HR: 10.06, 95% CI: 4.20-24.13). CONCLUSIONS: In the diabetic population, elevated plasma levels of hs-cTnT, hs-cTnI, NT-proBNP, creatinine, cystatin C, and ß-2 microglobulin serve as robust and straightforward predictors of long-term mortality compared to blood glucose levels and HbA1c values. Creatinine and cystatin C stand out as more precise markers for predicting diabetes mortality prior to blood glucose monitoring.


Subject(s)
Cystatin C , Diabetes Mellitus , Humans , Nutrition Surveys , Prospective Studies , Blood Glucose , Creatinine , Blood Glucose Self-Monitoring , Biomarkers , Natriuretic Peptide, Brain , Cohort Studies , Diabetes Mellitus/diagnosis , Peptide Fragments , Troponin T , Prognosis
19.
Front Genet ; 14: 1153585, 2023.
Article in English | MEDLINE | ID: mdl-37056287

ABSTRACT

Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.

20.
J Am Coll Cardiol ; 81(13): 1217-1230, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36925409

ABSTRACT

BACKGROUND: Optical coherence tomography (OCT) may provide a method for detecting histologically defined high-risk plaques in vivo. OBJECTIVES: The authors aimed to investigate the prognostic value of OCT for identifying patients and lesions that are at risk for adverse cardiac events. METHODS: Between January 2017 and May 2019, OCT of all the 3 main epicardial arteries was performed in 883 patients with acute myocardial infarction (MI) who were referred for primary percutaneous coronary intervention. The primary endpoint was the composite of cardiac death, nonculprit lesion-related nonfatal MI, and unplanned coronary revascularization. Patients were followed for up to 4 years (median 3.3 years). RESULTS: The 4-year cumulative rate of the primary endpoint was 7.2%. In patient-level analysis, thin-cap fibroatheroma (TCFA) (adjusted HR: 3.05; 95% CI: 1.67-5.57) and minimal lumen area (MLA) <3.5 mm2 (adjusted HR: 3.71; 95% CI: 1.22-11.34) were independent predictors of the primary endpoint. In lesion-level analysis, nonculprit lesions responsible for subsequent events were not angiographically severe at baseline (mean diameter stenosis 43.8% ± 13.4%). TCFA (adjusted HR: 8.15; 95% CI: 3.67-18.07) and MLA <3.5 mm2 (adjusted HR: 4.33; 95% CI: 1.81-10.38) were predictive of events arising from each specific lesion. TCFAs with an MLA <3.5 mm2 carried a higher risk and were sufficient for identifying patients at risk for the composite of cardiac death and nonculprit lesion-related nonfatal MI. CONCLUSIONS: OCT imaging of angiographically nonobstructive territories in patients with acute MI can aid in identifying patients and lesions at increased risk for adverse cardiac events.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications , Tomography, Optical Coherence/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Plaque, Atherosclerotic/pathology , Predictive Value of Tests , Coronary Angiography/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL