Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.935
1.
Am J Obstet Gynecol ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38838912

BACKGROUND: A major goal of contemporary obstetrical practice is to optimize fetal growth and development throughout pregnancy. To date, fetal growth during prenatal care is assessed by performing ultrasonographic measurement of two-dimensional fetal biometry to calculate an estimated fetal weight. Our group previously established two-dimensional fetal growth standards using sonographic data from a large cohort with multiple sonograms. A separate objective of that investigation involved the collection of fetal volumes from the same cohort. OBJECTIVE: The Fetal 3D Study was designed to establish standards for fetal soft tissue and organ volume measurements by three-dimensional ultrasonography and compare growth trajectories with conventional two-dimensional measures where applicable. STUDY DESIGN: The NICHD Fetal 3D Study included research-quality images of singletons collected in a prospective, racially and ethnically diverse, low-risk cohort of pregnant individuals at 12 U.S. sites, with up to five scans per fetus (N=1,730 fetuses). Abdominal subcutaneous tissue thickness was measured from two-dimensional images and fetal limb soft tissue parameters extracted from three-dimensional multiplanar views. Cerebellar, lung, liver and kidney volumes were measured using virtual organ computer aided analysis (VOCAL). Fractional arm and thigh total volumes, and fractional lean limb volumes were measured, with fractional limb fat volume calculated by subtracting lean from total. For each measure, weighted curves (5th, 50th, 95th percentiles) were derived from 15-41 weeks' using linear mixed models for repeated measures with cubic splines. RESULTS: Subcutaneous thickness of the abdomen, arm, and thigh increased linearly, with slight acceleration around 27-29 weeks. Fractional volumes of the arm, thigh, and lean limb volumes increased along a quadratic curvature, with acceleration around 29-30 weeks. In contrast, growth patterns for two-dimensional humerus and femur lengths demonstrated a logarithmic shape, with fastest growth in the 2nd trimester. The mid-arm area curve was similar in shape to fractional arm volume, with an acceleration around 30 weeks, whereas the curve for the lean arm area was more gradual. The abdominal area curve was similar to the mid-arm area curve with an acceleration around 29 weeks. The mid-thigh and lean area curves differed from the arm areas by exhibiting a deceleration at 39 weeks. The growth curves for the mid arm and thigh circumferences were more linear with some decelerations. Cerebellar two-dimensional diameter increased linearly, whereas cerebellar three-dimensional volume growth gradually accelerated until 32 weeks and then decelerated. Lung, kidney, and liver volumes all demonstrated gradual early growth followed by a linear acceleration beginning at 25 weeks for lungs, 26-27 weeks for kidneys, and 29 weeks for liver. CONCLUSION: Growth patterns and timing of maximal growth for three-dimensional lean and fat measures, limb and organ volumes differed from patterns revealed by traditional two-dimensional growth measures, suggesting these parameters reflect unique facets of fetal growth. Growth in these three-dimensional measures may be altered by genetic, nutritional, metabolic or environmental influences and pregnancy complications, in ways not identifiable using corresponding two-dimensional measures. Further investigation into the relationships of these three-dimensional standards to abnormal fetal growth, adverse perinatal outcomes, and health status in postnatal life is warranted.

2.
Poult Sci ; 103(7): 103831, 2024 May 13.
Article En | MEDLINE | ID: mdl-38833958

The recent emergence of hepatitis-hydropericardium syndrome caused by highly pathogenic fowl adenovirus serotype 4 (FAdV-4) has resulted in significant economic losses to the poultry industry. However, the early innate immune response of immune organs within 24 hpi and the induction of autophagy in vivo after FAdV-4 infection have not been fully elucidated. In this study, 35-day-old specific pathogen-free (SPF) chickens were artificially infected with hypervirulent FAdV-4, which resulted in a mortality rate of up to 90%. The results showed that FAdV-4 infection rapidly triggered the innate immune response in vivo of chickens, with the spleen eliciting a stronger innate immune response than the thymus and bursa. During the early stage of viral infection within 24 hpi, the main receptors TLR3/7/21, MDA5, and cGAS were activated via the NF-κB and TBK1/IRF7-dependent signaling pathways, which up-regulated production of inflammatory cytokines and type I interferons. Additionally, the expression levels of the autophagy-related molecules LC3B, Beclin1, and ATG5 were significantly up-regulated at 24 hpi, while degradation of SQSTM1/p62 was observed, suggesting that FAdV-4 infection elicits a complete autophagy response in the spleen. Besides, the colocalization of Fiber2 and LC3B suggested that FAdV-4 infection induced autophagy which benefits FAdV-4 replication in vivo. This study provides new insights into the immunoregulation signal pathways of the early innate immunity in response to hypervirulent FAdV-4 infection in vivo within 24 hpi and the close relationship between viral replication and autophagy.

3.
Poult Sci ; 103(7): 103848, 2024 May 16.
Article En | MEDLINE | ID: mdl-38843610

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.

4.
Nature ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839959

The recent discovery of superconductivity in La3Ni2O7-δ under high pressure with a transition temperature around 80 K (ref. 1) has sparked extensive experimental2-6 and theoretical efforts7-12. Several key questions regarding the pairing mechanism remain to be answered, such as the most relevant atomic orbitals and the role of atomic deficiencies. Here we develop a new, energy-filtered, multislice electron ptychography technique, assisted by electron energy-loss spectroscopy, to address these critical issues. Oxygen vacancies are directly visualized and are found to primarily occupy the inner apical sites, which have been proposed to be crucial to superconductivity13,14. We precisely determine the nanoscale stoichiometry and its correlation to the oxygen K-edge spectra, which reveals a significant inhomogeneity in the oxygen content and electronic structure within the sample. The spectroscopic results also reveal that stoichiometric La3Ni2O7 has strong charge-transfer characteristics, with holes that are self-doped from Ni sites into O sites. The ligand holes mainly reside on the inner apical O and the planar O, whereas the density on the outer apical O is negligible. As the concentration of O vacancies increases, ligand holes on both sites are simultaneously annihilated. These observations will assist in further development and understanding of superconducting nickelate materials. Our imaging technique for quantifying atomic deficiencies can also be widely applied in materials science and condensed-matter physics.

5.
Heliyon ; 10(11): e31320, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38841477

Background: collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method: Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result: Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion: our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.

6.
Sci Rep ; 14(1): 12718, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830921

This study evaluated retinal and choroidal microvascular changes in night shift medical workers and its correlation with melatonin level. Night shift medical workers (group A, 25 workers) and non-night shift workers (group B, 25 workers) were recruited. The images of macula and optic nerve head were obtained by swept-source OCT-angiography. Vessel density of retina, choriocapillaris (CC), choriocapillaris flow deficit (CC FD), choroidal thickness (CT) and choroidal vascularity index (CVI) were measured. 6-sulfatoxymelatonin concentration was analyzed from the morning urine. CC FD and CVI were significantly decreased and CT was significantly increased in group A (all P < 0.05). 6-sulfatoxymelatonin concentration was significantly lower in group A (P < 0.05), which was significantly positively correlated with CC FD size (r = 0.318, P = 0.024) and CVI of the most regions (maximum r-value was 0.482, P < 0.001), and was significantly negatively associated with CT of all regions (maximum r-value was - 0.477, P < 0.001). In night shift medical workers, the reduction of melatonin was significantly correlated with CT thickening, CVI reduction and CC FD reduction, which suggested that they might have a higher risk of eye diseases. CC FD could be a sensitive and accurate indicator to reflect CC perfusion.


Choroid , Melatonin , Microvessels , Retinal Vessels , Tomography, Optical Coherence , Humans , Choroid/blood supply , Choroid/diagnostic imaging , Tomography, Optical Coherence/methods , Male , Adult , Female , Melatonin/urine , Melatonin/analogs & derivatives , Microvessels/diagnostic imaging , Retinal Vessels/diagnostic imaging , Middle Aged , Shift Work Schedule/adverse effects , Angiography/methods , Retina/diagnostic imaging
7.
Article En | MEDLINE | ID: mdl-38691277

A growing body of research has confirmed the involvement of circular RNAs (circRNAs) in the regulation of intervertebral disc degeneration (IDD) progression. However, the underlying molecular networks remain largely elusive. This study aimed to explore whether a novel circRNA, named circKIAA0564, affects nucleus pulposus (NP) cell injury and to elucidate its molecular mechanism. Both in vivo and in vitro IDD models were established, and the expression patterns of circKIAA0564/miR-424-5p/lysine demethylase 4a (KDM4A) were evaluated through quantitative reverse transcription PCR and Western blot analysis. Actinomycin D, RNase R, and Northern blotting were utilized to assess the circular structure of circKIAA0564. The Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, commercial assay kits, Western blotting, and reactive oxygen species (ROS) probes were employed to assess the inflammatory and oxidative stress status in NP cells and tissues. Hematoxylin and eosin and TUNEL staining were used to evaluate pathological damage in mouse NP tissues. RNA immunoprecipitation and dual-luciferase reporter assays were conducted to assess the direct targeting relationships among circKIAA0564, miR-424-5p, and KDM4A. CircKIAA0564 was found to be abnormally overexpressed in IDD, functioning as a novel circRNA. Knockdown of circKIAA0564 ameliorated interleukin-1 beta (IL-1ß)-induced inflammation and oxidative stress in NP cells. The therapeutic effect of circKIAA0564 knockdown on NP cells was reversed by the silencing of miR-424-5p. Overexpression of circKIAA0564 exacerbated IL-1ß-induced NP cell injury, a process that was reversed by knockdown of KDM4A. CircKIAA0564 activated the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) signaling pathway by regulating the miR-424-5p/KDM4A axis. CircKIAA0564 exacerbates IL-1ß-induced inflammation and oxidative stress in NP cells by competitively binding miR-424-5p, thereby mediating KDM4A and activating the TLR4/NF-κB/NLRP3 signaling pathway. These findings provide robust data support for targeted therapy of IDD and the development of future pharmaceuticals.

8.
Article En | MEDLINE | ID: mdl-38700418

Deep venous thrombosis (DVT) is a potentially life-threatening disorder with high morbidity. Uvaol is a natural pentacyclic triterpene possessing multiple pharmacological activities. Nevertheless, the role of uvaol in DVT is unclarified. Human umbilical vein endothelial cells (HUVECs) were treated with hydrogen peroxide (H 2 O 2 ) to mimic DVT in vitro . CCK-8 assay and flow cytometry were utilized for measuring cell viability and apoptosis, respectively. Levels of the cell injury marker, thrombosis-associated factors, inflammatory cytokines, and oxidative stress-related markers were examined by commercial assay kits. Western blotting was used for evaluating the expression of mitogen-activated protein kinase (MAPK) signaling-associated proteins. Uvaol treatment attenuated H 2 O 2 -induced HUVEC apoptosis and injury. Uvaol reduced the expression of pro-thrombotic factors and inflammatory cytokines and attenuated oxidative stress in H 2 O 2 -stimulated HUVECs. Uvaol inhibited MAPK signaling pathway in H 2 O 2 -stimulated HUVECs. Activating MAPK signaling reversed uvaol-mediated protective effects on H 2 O 2 -treated HUVECs. Uvaol treatment alleviates H 2 O 2 -induced HUVEC injury, apoptosis, and oxidative stress by inactivating MAPK signaling.

9.
Biochem Biophys Rep ; 38: 101715, 2024 Jul.
Article En | MEDLINE | ID: mdl-38698835

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in many pathophysiological processes. Supplementation with NAD+ and its precursors has been demonstrated as an emerging therapeutic strategy for the diseases. NAD+ also plays an important role in the reproductive system. Here, we summarize the function of NAD+ in various reproductive diseases and review the application of NAD+ and its precursors in the preservation of reproductive capacity and the prevention of embryonic malformations. It is shown that NAD+ shows good promise as a therapeutic approach for saving reproductive capacity.

10.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702537

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Fermentation , Molasses , Rhodotorula , Saccharum , beta Carotene , Rhodotorula/metabolism , Rhodotorula/genetics , Rhodotorula/growth & development , Rhodotorula/isolation & purification , Rhodotorula/classification , Saccharum/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Carotenoids/metabolism , Antioxidants/metabolism , Biomass , Culture Media/chemistry , Phylogeny
11.
Biotechnol Biofuels Bioprod ; 17(1): 60, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711141

BACKGROUND: The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS: Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS: Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.

12.
J Eval Clin Pract ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713640

AIM: This study was designed to investigate the association between Charlson Comorbidity Index (CCI) and in-hospital mortality and other clinical outcomes among patients with hyperglycemic crises. METHOD: This retrospective cohort study was conducted using data from electric medical records. A total of 1668 diabetic patients with hyperglycemic crises from six tertiary hospitals met the inclusion criteria. CCI < 4 was defined as low CCI and CCI ≥ 4 was defined as high CCI. Propensity score matching (PSM) with the 1:1 nearest neighbour matching method and the caliper value of 0.02 was used to match the baseline characteristics of patients with high CCI and low CCI to reduce the confounding bias. In-hospital mortality, ICU admission, hypoglycemia, hypokalemia, acute kidney injury, length of stay (LOS), and hospitalisation expense between low CCI and high CCI were compared and assessed. Univariate and multivariate regression were applied to estimate the impact of CCI on in-hospital and other clinical outcomes. OUTCOME: One hundred twenty-one hyperglycemic crisis (HC) patients died with a mortality rate of 7.3%. After PSM, compared with low CCI, patients with high CCI suffered higher in-hospital mortality, ICU admission, LOS, and hospitalisation expenses. After multivariate regression, age (aOR: 1.12, 95% confidence interval [CI]: 1.06-1.18, p < 0.001), CCI(aOR: 4.42, 95% CI: 1.56-12.53, p = 0.005), uninsured (aOR: 22.32, 95% CI: 4.26-116.94, p < 0.001), shock (aOR: 10.57, 95% CI: 1.41-79.09, p = 0.022), mechanical ventilation (aOR: 75.29, 95% CI: 12.37-458.28, p < 0.001), and hypertension (aOR: 4.34, 95% CI: 1.37-13.82, p = 0.013) were independent risk factors of in-hospital mortality of HC patients. Besides, high CCI was an independent risk factor for higher ICU Admission (aOR: 5.91, 95% CI: 2.31-15.08, p < 0.001), hypoglycemia (aOR: 2.19, 95% CI:1.01-4.08, p = 0.049), longer LOS (aOR: 1.23, 95% CI: 1.19-2.27, p = 0.021), and higher hospitalisation expense (aOR: 2089.97, 95% CI: 193.33-3988.61, p = 0.031) of HC patients. CONCLUSION: CCI is associated with in-hospital mortality, ICU admission, hypoglycemia, LOS, and hospitalisation expense of HC patients. CCI could be an ideal indicator to identify, monitor, and manage chronic comorbidities among HC patients.

13.
Mil Med Res ; 11(1): 32, 2024 May 29.
Article En | MEDLINE | ID: mdl-38812059

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Mitochondria , Mitophagy , Humans , Mitochondria/metabolism , Mitochondria/physiology , Mitophagy/physiology , Mitophagy/drug effects , Mitochondrial Dynamics/physiology
14.
Rev Invest Clin ; 76(2): 103-115, 2024 May 06.
Article En | MEDLINE | ID: mdl-38753591

Background: Ovarian cancer is a fatal gynecologic malignancy. Long non-coding RNA (lncRNA) has been verified to serve as key regulator in ovarian cancer tumorigenesis. Objective: The aim of the study was to study the functions and mechanism of lncRNA PITPNA-AS1 in ovarian cancer cellular process. Methods: Clinical ovarian cancer samples were collected and stored at an academic medical center. Cellular fractionation assays and fluorescence in situ hybridization were conducted to locate PITPNA-AS1 in OC cells. TUNEL staining, colony-forming assays, and Transwell assays were performed for evaluating cell apoptosis as well as proliferative and migratory abilities. Western blot was conducted for quantifying protein levels of epithelialmesenchymal transition markers. The binding relation between genes was verified by RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays. Gene expression levels in ovarian cancer tissues and cells were subjected to RT-qPCR. Results: PITPNA-AS1 level was downregulated in ovarian cancer samples and cells. PITPNA-AS1 overexpression contributed to the accelerated ovarian cancer cell apoptosis and inhibited cell migration, proliferation, and epithelial-mesenchymal transition process. In addition, PITPNA-AS1 interacted with miR-223-3p to regulate RHOB. RHOB knockdown partially counteracted the repressive impact of PITPNA-AS1 on ovarian cancer cell activities. Conclusion: PITPNA-AS1 inhibited ovarian cancer cellular behaviors by targeting miR-223-3p and regulating RHOB.


Apoptosis , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Down-Regulation
15.
Eur J Pharm Biopharm ; 199: 114309, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704102

Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.


Alginates , Chitosan , Colitis, Ulcerative , Drug Delivery Systems , Gels , Microspheres , Saponins , Colitis, Ulcerative/drug therapy , Animals , Rats , Alginates/chemistry , Chitosan/chemistry , Drug Delivery Systems/methods , Male , Saponins/pharmacology , Saponins/administration & dosage , Saponins/chemistry , Particle Size , Humans , Colon/drug effects , Colon/metabolism , Colon/pathology , Rats, Sprague-Dawley , Polymers/chemistry , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Administration, Oral
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38742521

Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.


Ferroptosis , Ferroptosis/genetics , Humans , Disease Progression , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Iron/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
17.
PLoS One ; 19(5): e0303218, 2024.
Article En | MEDLINE | ID: mdl-38743741

This study examines the effects of the rising live streaming e-commerce on the 3DP supply chain, employing system dynamics to develop separate models for pure polymer and polymer-metal mixed printing. The analysis focuses on optimizing the 3DP supply chain configuration. Results indicate that, based solely on printing time, cost, and quality metrics, Corporate-live-3DP services are optimal for live commerce scenarios. However, despite this, Private-live-3DP maintains a substantial consumer base in practice, as evidenced by literature data and case studies. Both models pose significant challenges to conventional supply chains, necessitating adaptation. For Corporate-live-3DP, optimization strategies may include technology advancements, digital transformation, agile manufacturing, global network optimization, innovative management, collaborative R&D, fine-tuned inventory control, quality system upgrades, talent development, and organizational restructuring. Conversely, Private-live-3DP can be optimized through consolidation of private 3D printing resources, demand prediction and order optimization, supply chain collaboration platforms, quality management extensions, inventory strategy adjustments, increased transparency, regulatory compliance, and risk mitigation measures.


Printing, Three-Dimensional , Commerce , Polymers/chemistry , Humans
18.
Int Arch Allergy Immunol ; : 1-8, 2024 May 23.
Article En | MEDLINE | ID: mdl-38781930

INTRODUCTION: While a specific number and type of antigens are recognized to detect perennial inhalant allergies, the optimal number and combination of allergens to reliably identify seasonal allergic sensitization is unclear due to limited national data. This study analyzed aeroallergen testing data from a large US clinical reference laboratory to provide guidance for optimizing seasonal allergen test selection. METHODS: The 2019 serum IgE tests for seasonal inhalant allergens were identified from the Quest Diagnostics database. Patients with results for at least 1 of 31 seasonal allergens across 4 allergen classes (11 trees, 7 weeds, 5 grasses, and 8 molds) were analyzed. A step-by-step conditional approach was employed to determine the minimum number and species of allergens needed to identify at least 98% of sensitized patients for each class. RESULTS: Of 88,042 patients tested for ≥1 seasonal allergen, 1.5%, 1.8%, 1.3%, and 1.6% were tested for all trees, weeds, grasses, and molds, respectively. Of those tested for all allergens within a class, 40.4%, 38.6%, 29.5%, and 21.2% were sensitized to at least one tree, weed, grass, or mold allergen, respectively. Identification of ≥98% of sensitized patients within a class required 8 allergens for trees (mountain cedar, maple box elder, walnut, white ash, elm, birch, cottonwood, and hickory/pecan), 5 for weeds (common ragweed short, rough pigweed, English plantain, lamb's quarters/goosefoot, and Russian thistle), 3 for grasses (June/Kentucky blue grass, Johnson grass, and Bermuda grass), and 7 for molds (Alternaria alternata, Aspergillus fumigatus, Mucor racemosus, Epicoccum purpurascens, Penicillium notatum, Helminthosporium halodes, and Fusarium moniliforme). CONCLUSION: A minimum of 23 antigens is required to optimally detect sensitization to four classes of seasonal allergens (i.e., ≥98% identification). The addition of these allergens to unique perennial allergens (cat, dog, mouse, cockroach, and 2 dust mite species) results in a comprehensive elucidation of inhalant allergen sensitization. This knowledge provides a pivotal guide for clinical laboratories as they construct allergen panels to optimize diagnostic yield.

19.
J Xray Sci Technol ; 2024 May 18.
Article En | MEDLINE | ID: mdl-38788116

Cardiovascular disease (CVD), a global health concern, particularly coronary artery disease (CAD), poses a significant threat to well-being. Seeking safer and cost-effective diagnostic alternatives to invasive coronary angiography, noninvasive coronary computed tomography angiography (CCTA) gains prominence. This study employed OpenFOAM, an open-source Computational Fluid Dynamics (CFD) software, to analyze hemodynamic parameters in coronary arteries with serial stenoses. Patient-specific three-dimensional (3D) models from CCTA images offer insights into hemodynamic changes. OpenFOAM breaks away from traditional commercial software, validated against the FDA benchmark nozzle model for reliability. Applying this refined methodology to seventeen coronary arteries across nine patients, the study evaluates parameters like fractional flow reserve computed tomography simulation (FFRCTS), fluid velocity, and wall shear stress (WSS) over time. Findings include FFRCTS values exceeding 0.8 for grade 0 stenosis and falling below 0.5 for grade 5 stenosis. Central velocity remains nearly constant for grade 1 stenosis but increases 3.4-fold for grade 5 stenosis. This research innovates by utilizing OpenFOAM, departing from previous reliance on commercial software. Combining qualitative stenosis grading with quantitative FFRCTS and velocity measurements offers a more comprehensive assessment of coronary artery conditions. The study introduces 3D renderings of wall shear stress distribution across stenosis grades, providing an intuitive visualization of hemodynamic changes for valuable insights into coronary stenosis diagnosis.

20.
Med Image Anal ; 96: 103205, 2024 May 17.
Article En | MEDLINE | ID: mdl-38788328

Multi-phase enhanced computed tomography (MPECT) translation from plain CT can help doctors to detect the liver lesion and prevent patients from the allergy during MPECT examination. Existing CT translation methods directly learn an end-to-end mapping from plain CT to MPECT, ignoring the crucial clinical domain knowledge. As clinicians subtract the plain CT from MPECT images as subtraction image to highlight the contrast-enhanced regions and further to facilitate liver disease diagnosis in the clinical diagnosis, we aim to exploit this domain knowledge for automatic CT translation. To this end, we propose a Mask-Aware Transformer (MAFormer) with structure invariant loss for CT translation, which presents the first effort to exploit this domain knowledge for CT translation. Specifically, the proposed MAFormer introduces a mask estimator to predict the subtraction image from the plain CT image. To integrate the subtraction image into the network, the MAFormer devises a Mask-Aware Transformer based Normalization (MATNorm) as normalization layer to highlight the contrast-enhanced regions and capture the long-range dependencies among these regions. Moreover, aiming to preserve the biological structure of CT slices, a structure invariant loss is designed to extract the structural information and minimize the structural similarity between the plain and synthetic CT images to ensure the structure invariant. Extensive experiments have proven the effectiveness of the proposed method and its superiority to the state-of-the-art CT translation methods. Source code is to be released.

...