Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(9): 113070, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37659079

ABSTRACT

The TMEM127 gene encodes a transmembrane protein of poorly known function that is mutated in pheochromocytomas, neural crest-derived tumors of adrenomedullary cells. Here, we report that, at single-nucleus resolution, TMEM127-mutant tumors share precursor cells and transcription regulatory elements with pheochromocytomas carrying mutations of the tyrosine kinase receptor RET. Additionally, TMEM127-mutant pheochromocytomas, human cells, and mouse knockout models of TMEM127 accumulate RET and increase its signaling. TMEM127 contributes to RET cellular positioning, trafficking, and lysosome-mediated degradation. Mechanistically, TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127 C-terminal PxxY motifs. Lastly, increased cell proliferation and tumor burden after TMEM127 loss can be reversed by selective RET inhibitors in vitro and in vivo. Our results define TMEM127 as a component of the ubiquitin system and identify aberrant RET stabilization as a likely mechanism through which TMEM127 loss-of-function mutations cause pheochromocytoma.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Animals , Mice , Pheochromocytoma/genetics , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Germ-Line Mutation , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Mutation/genetics , Ubiquitination , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
2.
Cell Rep Med ; 3(7): 100686, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858593

ABSTRACT

The RET kinase receptor is a target of mutations in neural crest tumors, including pheochromocytomas, and of oncogenic fusions in epithelial cancers. We report a RET::GRB2 fusion in a pheochromocytoma in which RET, functioning as the upstream partner, retains its kinase domain but loses critical C-terminal motifs and is fused to GRB2, a physiological RET interacting protein. RET::GRB2 is an oncogenic driver that leads to constitutive, ligand-independent RET signaling; has transforming capability dependent on RET catalytic function; and is sensitive to RET inhibitors. These observations highlight a new driver event in pheochromocytomas potentially amenable for RET-driven therapy.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Adrenal Gland Neoplasms/genetics , GRB2 Adaptor Protein , Gene Fusion , Humans , Mutation , Oncogene Proteins , Oncogenes , Pheochromocytoma/genetics , Proto-Oncogene Proteins c-ret/genetics
3.
J Clin Endocrinol Metab ; 106(1): e350-e364, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33051659

ABSTRACT

PURPOSE: This work aimed to evaluate genotype-phenotype associations in individuals carrying germline variants of transmembrane protein 127 gene (TMEM127), a poorly known gene that confers susceptibility to pheochromocytoma (PHEO) and paraganglioma (PGL). DESIGN: Data were collected from a registry of probands with TMEM127 variants, published reports, and public databases. MAIN OUTCOME ANALYSIS: Clinical, genetic, and functional associations were determined. RESULTS: The cohort comprised 110 index patients (111 variants) with a mean age of 45 years (range, 21-84 years). Females were predominant (76 vs 34, P < .001). Most patients had PHEO (n = 94; 85.5%), although PGL (n = 10; 9%) and renal cell carcinoma (RCC, n = 6; 5.4%) were also detected, either alone or in combination with PHEO. One-third of the cases had multiple tumors, and known family history was reported in 15.4%. Metastatic PHEO/PGL was rare (2.8%). Epinephrine alone, or combined with norepinephrine, accounted for 82% of the catecholamine profiles of PHEO/PGLs. Most variants (n = 63) occurred only once and 13 were recurrent (2-12 times). Although nontruncating variants were less frequent than truncating changes overall, they were predominant in non-PHEO clinical presentations (36% PHEO-only vs 69% other, P < .001) and clustered disproportionately within transmembrane regions (P < .01), underscoring the relevance of these domains for TMEM127 function. Integration of clinical and previous experimental data supported classification of variants into 4 groups based on mutation type, localization, and predicted disruption. CONCLUSIONS: Patients with TMEM127 variants often resemble sporadic nonmetastatic PHEOs. PGL and RCC may also co-occur, although their causal link requires further evaluation. We propose a new classification to predict variant pathogenicity and assist with carrier surveillance.


Subject(s)
Adrenal Gland Neoplasms/genetics , Membrane Proteins/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/epidemiology , Adult , Aged , Aged, 80 and over , Cohort Studies , Databases, Genetic , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Male , Middle Aged , Pheochromocytoma/epidemiology , Retrospective Studies , Young Adult
4.
Nat Commun ; 10(1): 4720, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624249

ABSTRACT

Understanding the molecular components of insulin signaling is relevant to effectively manage insulin resistance. We investigated the phenotype of the TMEM127 tumor suppressor gene deficiency in vivo. Whole-body Tmem127 knockout mice have decreased adiposity and maintain insulin sensitivity, low hepatic fat deposition and peripheral glucose clearance after a high-fat diet. Liver-specific and adipose-specific Tmem127 deletion partially overlap global Tmem127 loss: liver Tmem127 promotes hepatic gluconeogenesis and inhibits peripheral glucose uptake, while adipose Tmem127 downregulates adipogenesis and hepatic glucose production. mTORC2 is activated in TMEM127-deficient hepatocytes suggesting that it interacts with TMEM127 to control insulin sensitivity. Murine hepatic Tmem127 expression is increased in insulin-resistant states and is reversed by diet or the insulin sensitizer pioglitazone. Importantly, human liver TMEM127 expression correlates with steatohepatitis and insulin resistance. Our results suggest that besides tumor suppression activities, TMEM127 is a nutrient-sensing component of glucose/lipid homeostasis and may be a target in insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Genes, Tumor Suppressor , Insulin Resistance/genetics , Liver/metabolism , Membrane Proteins/genetics , Adipogenesis/genetics , Animals , Diet, High-Fat , Gene Expression Profiling/methods , Gluconeogenesis/genetics , Humans , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Specificity/genetics
5.
Hum Mol Genet ; 27(10): 1794-1808, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29547888

ABSTRACT

The TMEM127 tumor suppressor gene encodes a transmembrane protein of unknown function mutated in pheochromocytomas and, rarely, in renal cancers. Tumors with inactivating TMEM127 mutations have increased mTORC1 signaling by undefined mechanisms. Here we report that TMEM127 interacts with the lysosome-anchored complex comprised of Rag GTPases, the LAMTOR pentamer (or 'ragulator') and vATPase, which controls amino acid-mediated mTORC1 activation. We found that under nutrient-rich conditions TMEM127 expression reduces mTORC1 recruitment to Rags. In addition, TMEM127 interacts with LAMTOR in an amino acid-dependent manner and decreases the LAMTOR1-vATPase association, while TMEM127-vATPase binding requires intact lysosomal acidification but is amino acid independent. Conversely, both murine and human cells lacking TMEM127 accumulate LAMTOR proteins in the lysosome. Consistent with these findings, pheochromocytomas with TMEM127 mutations have increased levels of LAMTOR proteins. These results suggest that TMEM127 interactions with ragulator and vATPase at the lysosome contribute to restrain mTORC1 signaling in response to amino acids, thus explaining the increased mTORC1 activation seen in TMEM127-deficient tumors.


Subject(s)
Adrenal Gland Neoplasms/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Amino Acids/genetics , Animals , Gene Expression Regulation , Genes, Tumor Suppressor , Humans , Intracellular Signaling Peptides and Proteins , Lysosomes/genetics , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Multiprotein Complexes/genetics , Mutation , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Signal Transduction
7.
Cancer Biomark ; 19(3): 249-256, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28453459

ABSTRACT

OBJECTIVE: The aim of this study is to compare surgery with adjuvant chemoradiotherapy versus non-surgical treatments for patients with early-stage small cell lung cancer (SCLC) based on the short-term and long-term efficacy. METHODS: SCLC patients who underwent a pulmonary lobectomy with post-surgical radiotherapy or chemotherapy were assigned to the surgical group. SCLC patients who received radiotherapy or chemotherapy alone were classified into the non-surgical group. The clinical efficacy was evaluated as complete remission (CR), partial remission (PR), stable disease (SD), or progressive disease (PD). The total effectiveness rate was calculated as CR + PR. The 1-, 3-, and 5-year survival rates of the two groups were compared. RESULTS: Compared with the non-surgical group, the CR rate and the total effectiveness rate were higher in the surgical group, and the total effectiveness rate for male patients and patients without a smoking history were also higher in the surgical group. Distant metastasis and local recurrence concurrent with distant metastasis in the surgical group were both lower in the surgical group than in the non-surgical group. Compared with the non-surgical group, the local recurrence in male patients was lower in the surgical group, and patients in the surgical group had lower distant metastasis at TNM stage IIb. The 1-, 3-, and 5-year survival rates were higher in the surgical group than in the non-surgical group. CONCLUSIONS: These findings indicate that for patients with early-stage SCLC, better scores in effectiveness rate, disease progression, and 1-, 3-, and 5-year survival rates were observed in patients who underwent surgery followed by adjuvant chemoradiotherapy when compared with patients without surgical treatment.


Subject(s)
Lung Neoplasms/surgery , Lung Neoplasms/therapy , Small Cell Lung Carcinoma/surgery , Small Cell Lung Carcinoma/therapy , Adult , Combined Modality Therapy , Disease Progression , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Small Cell Lung Carcinoma/pathology , Survival Analysis
8.
Clin Cancer Res ; 22(9): 2301-10, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26700204

ABSTRACT

PURPOSE: Pheochromocytomas and paragangliomas (PPGL) are genetically heterogeneous tumors of neural crest origin, but the molecular basis of most PPGLs is unknown. EXPERIMENTAL DESIGN: We performed exome or transcriptome sequencing of 43 samples from 41 patients. A validation set of 136 PPGLs was used for amplicon-specific resequencing. In addition, a subset of these tumors was subjected to microarray-based transcription, protein expression, and histone methylation analysis by Western blotting or immunohistochemistry. In vitro analysis of mutants was performed in cell lines. RESULTS: We detected mutations in chromatin-remodeling genes, including histone-methyltransferases, histone-demethylases, and histones in 11 samples from 8 patients (20%). In particular, we characterized a new cancer syndrome involving PPGLs and giant cell tumors of bone (GCT) caused by a postzygotic G34W mutation of the histone 3.3 gene, H3F3A Furthermore, mutations in kinase genes were detected in samples from 15 patients (37%). Among those, a novel germline kinase domain mutation of MERTK detected in a patient with PPGL and medullary thyroid carcinoma was found to activate signaling downstream of this receptor. Recurrent germline and somatic mutations were also detected in MET, including a familial case and sporadic PPGLs. Importantly, in each of these three genes, mutations were also detected in the validation group. In addition, a somatic oncogenic hotspot FGFR1 mutation was found in a sporadic tumor. CONCLUSIONS: This study implicates chromatin-remodeling and kinase variants as frequent genetic events in PPGLs, many of which have no other known germline driver mutation. MERTK, MET, and H3F3A emerge as novel PPGL susceptibility genes. Clin Cancer Res; 22(9); 2301-10. ©2015 AACR.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Germ-Line Mutation/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Adolescent , Adrenal Gland Neoplasms/genetics , Adult , Aged , Carcinoma, Neuroendocrine/genetics , Child , Exome/genetics , Female , Giant Cell Tumor of Bone/genetics , Histone Demethylases/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Male , Middle Aged , Thyroid Neoplasms/genetics , Young Adult , c-Mer Tyrosine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...