Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Article in English | MEDLINE | ID: mdl-38904851

ABSTRACT

Computational, or in-silico, models are an effective, non-invasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in-silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.

2.
Article in English | MEDLINE | ID: mdl-38918266

ABSTRACT

Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.

3.
Eur Heart J Imaging Methods Pract ; 2(1): qyae039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38784433

ABSTRACT

While cardiac output reserve with exercise predicts outcomes in cardiac and pulmonary vascular disease, precise quantification of exercise cardiac output requires invasive cardiopulmonary testing (iCPET). To improve the accuracy of cardiac output reserve estimation with transthoracic echocardiography (TTE), this prospective study aims to define changes in right ventricular outflow tract diameter (RVOTd) with exercise and its relationship with invasively measured haemodynamics. Twenty subjects underwent simultaneous TTE and iCPET, with data collected at rest, leg-raise, 25 W, 50 W (n = 16), 75 W (n = 14), and 100 W (n = 6). This was followed by a second exercise study with real-time RV pressure-volume loops at similar stages (except leg-raise). The overall cohort included heart failure with preserved ejection fraction (n = 12), pulmonary arterial hypertension (n = 5), and non-cardiac dyspnoea (n = 3). RVOTd was reverse engineered from the TTE-derived RVOT velocity time integral (VTI) and iCPET-derived stroke volume, using the formula: Fick stroke volume = RVOT VTI × RVOT area (wherein RVOT area = π × [RVOTd/2]2). RVOTd increased by nearly 3-4% at every 25 W increment. Using linear regression models, where each subject is treated as a categorical variable and adjusting for subject intercept, RVOTd was correlated with haemodynamic variables (cardiac output, heart rate, pulmonary artery and RV pressures). Of all the predictor haemodynamic variables, cardiac output had the highest r2 model fit (adjusted r2 = 0.68), with a unit increase in cardiac output associated with a 0.0678 increase in RVOTd (P < 0.001). Our findings indicate that RVOTd increases by 3-4% with every 25 W increment, predominantly correlated with cardiac output augmentation. These results can improve the accuracy of cardiac output reserve estimation by adjusting for RVOTd with graded exercise during non-invasive CPET and echocardiogram. However, future studies are needed to define these relationships for left ventricular outflow tract diameter.

4.
Sci Transl Med ; 16(732): eadc8930, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295182

ABSTRACT

A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Hypertension, Pulmonary , Humans , Mice , Animals , Hypertension, Pulmonary/etiology , Histones , Acetylation , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/complications , Hernias, Diaphragmatic, Congenital/pathology , Lung/pathology
5.
Int J Numer Method Biomed Eng ; 40(3): e3798, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214099

ABSTRACT

Pulmonary hypertension is a cardiovascular disorder manifested by elevated mean arterial blood pressure (>20 mmHg) together with vessel wall stiffening and thickening due to alterations in collagen, elastin, and smooth muscle cells. Hypoxia-induced (type 3) pulmonary hypertension can be studied in animals exposed to a low oxygen environment for prolonged time periods leading to biomechanical alterations in vessel wall structure. This study introduces a novel approach to formulating a reduced order nonlinear elastic structural wall model for a large pulmonary artery. The model relating blood pressure and area is calibrated using ex vivo measurements of vessel diameter and wall thickness changes, under controlled pressure conditions, in left pulmonary arteries isolated from control and hypertensive mice. A two-layer, hyperelastic, and anisotropic model incorporating residual stresses is formulated using the Holzapfel-Gasser-Ogden model. Complex relations predicting vessel area and wall thickness with increasing blood pressure are derived and calibrated using the data. Sensitivity analysis, parameter estimation, subset selection, and physical plausibility arguments are used to systematically reduce the 16-parameter model to one in which a much smaller subset of identifiable parameters is estimated via solution of an inverse problem. Our final reduced one layer model includes a single set of three elastic moduli. Estimated ranges of these parameters demonstrate that nonlinear stiffening is dominated by elastin in the control animals and by collagen in the hypertensive animals. The pressure-area relation developed in this novel manner has potential impact on one-dimensional fluids network models of vessel wall remodeling in the presence of cardiovascular disease.


Subject(s)
Hypertension, Pulmonary , Hypertension , Animals , Mice , Pulmonary Artery , Elastin , Collagen
6.
Biomech Model Mechanobiol ; 23(2): 469-483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38017302

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstructs flow and increases pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the small pulmonary arteries due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we applied a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) approach to investigate the impact of CTEPH on pulmonary artery stiffening, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) in extralobar (main, right, and left) pulmonary arteries and intralobar (distal to the extralobar) arteries. Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar and intralobar arteries. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI, quantified by the novel parameter φ , which is related to thrombogenicity. Our analysis reveals a strong positive correlation between increases in mean pulmonary artery pressure (mPAP) and φ from baseline to CTEPH in individual subjects, which supports the suggestion that increased φ drives disease severity. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Animals , Humans , Pulmonary Embolism/complications , Hydrodynamics , Pulmonary Artery , Lung/blood supply , Hemodynamics
9.
Front Physiol ; 14: 1231688, 2023.
Article in English | MEDLINE | ID: mdl-37745253

ABSTRACT

Introduction: The left (LV) and right (RV) ventricles are linked biologically, hemodynamically, and mechanically, a phenomenon known as ventricular interdependence. While LV function has long been known to impact RV function, the reverse is increasingly being realized to have clinical importance. Investigating ventricular interdependence clinically is challenging given the invasive measurements required, including biventricular catheterization, and confounding factors such as comorbidities, volume status, and other aspects of subject variability. Methods: Computational modeling allows investigation of mechanical and hemodynamic interactions in the absence of these confounding factors. Here, we use a threesegment biventricular heart model and simple circulatory system to investigate ventricular interdependence under conditions of systolic and diastolic dysfunction of the LV and RV in the presence of compensatory volume loading. We use the end-diastolic pressure-volume relationship, end-systolic pressure-volume relationship, Frank Starling curves, and cardiac power output as metrics. Results: The results demonstrate that LV systolic and diastolic dysfunction lead to RV compensation as indicated by increases in RV power. Additionally, RV systolic and diastolic dysfunction lead to impaired LV filling, interpretable as LV stiffening especially with volume loading to maintain systemic pressure. Discussion: These results suggest that a subset of patients with intact LV systolic function and diagnosed to have impaired LV diastolic function, categorized as heart failure with preserved ejection fraction (HFpEF), may in fact have primary RV failure. Application of this computational approach to clinical data sets, especially for HFpEF, may lead to improved diagnosis and treatment strategies and consequently improved outcomes.

11.
Res Sq ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577616

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstruct flow and increase pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the pulmonary vasculature due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we developed a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) models to investigate the impact of CTEPH on pulmonary artery stiffening, time averaged wall shear stress (TAWSS), and oscillatory shear index (OSI). Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar (main, right and left pulmonary arteries) and intralobar vessels. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression, including the combination of low mean wall shear stress with high oscillation. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.

13.
J Am Heart Assoc ; 12(3): e028121, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36734341

ABSTRACT

Combined pre-/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mechanotransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the progression to Cpc-PH. We focus on pathologically increased cyclic stretch and decreased wall shear stress; mechanotransduction by endothelial cells, smooth muscle cells, and pulmonary arterial fibroblasts; and signaling-stimulated remodeling of the pulmonary veins, capillaries, and arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and mechanobiological mechanisms of Cpc-PH progression may highlight potential pharmacologic avenues to prevent right heart failure and subsequent mortality.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Humans , Endothelial Cells , Mechanotransduction, Cellular , Pulmonary Artery
15.
J Hypertens ; 41(2): 316-325, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36479879

ABSTRACT

BACKGROUND: Exercise-induced changes in arterial function could contribute to a hypertensive response to exercise (HRE) in older individuals. We performed the present analysis to define the acute arterial stiffness response to exercise in ambulatory older adults. METHODS: Thirty-nine Veterans (>60 years old), without known cardiovascular disease, participated in this study, including 19 Veterans who were hypertensive (70.8 ±â€Š6.8 years, 53% women) and 20 Veterans who were normotensive (72.0 ±â€Š9.3 years, 40% women). Arterial stiffness parameters were measured locally with carotid artery ultrasound and regionally with carotid-femoral pulse wave velocity (cfPWV) before and during the 10 min after participants performed a Balke maximal exercise treadmill stress test. RESULTS: The arterial stiffness response to exercise was similar for control and hypertensive participants. At 6 min postexercise, cfPWV was significantly increased (Δ1.5 ±â€Š1.9 m/s, P  = 0.004) despite mean blood pressure (BP) having returned to its baseline value (Δ1 ±â€Š8 mmHg, P  = 0.79). Arterial mechanics modeling also showed BP-independent increases in arterial stiffness with exercise ( P  < 0.05). Postexercise cfPWV was correlated with postexercise SBP ( r  = 0.50, P  = 0.004) while baseline cfPWV ( r  = 0.13, P  = 1.00), and postexercise total peripheral resistance ( r  = -0.18, P  = 1.00) were not. CONCLUSION: In older Veterans, exercise increases arterial stiffness independently of BP and the arterial stiffness increase with exercise is associated with increased postexercise SBP. BP-independent increases in arterial stiffness with exercise could contribute to a HRE in older adults.


Subject(s)
Hypertension , Vascular Stiffness , Veterans , Humans , Female , Aged , Middle Aged , Male , Blood Pressure/physiology , Pulse Wave Analysis , Vascular Stiffness/physiology
16.
PLoS Comput Biol ; 18(9): e1010017, 2022 09.
Article in English | MEDLINE | ID: mdl-36126091

ABSTRACT

In-vivo studies of pulmonary vascular disease and pulmonary hypertension (PH) have provided key insight into the progression of right ventricular (RV) dysfunction. Additional in-silico experiments using multiscale computational models have provided further details into biventricular mechanics and hemodynamic function in the presence of PH, yet few have assessed whether model parameters are practically identifiable prior to data collection. Moreover, none have used modeling to devise synergistic experimental designs. To address this knowledge gap, we conduct a practical identifiability analysis of a multiscale cardiovascular model across four simulated experimental designs. We determine a set of parameters using a combination of Morris screening and local sensitivity analysis, and test for practical identifiability using profile likelihood-based confidence intervals. We employ Markov chain Monte Carlo (MCMC) techniques to quantify parameter and model forecast uncertainty in the presence of noise corrupted data. Our results show that model calibration to only RV pressure suffers from practical identifiability issues and suffers from large forecast uncertainty in output space. In contrast, parameter and model forecast uncertainty is substantially reduced once additional left ventricular (LV) pressure and volume data is included. A comparison between single point systolic and diastolic LV data and continuous, time-dependent LV pressure-volume data reveals that at least some quantitative data from both ventricles should be included for future experimental studies.


Subject(s)
Hypertension, Pulmonary , Ventricular Dysfunction, Right , Heart Ventricles , Humans , Likelihood Functions , Research Design , Ventricular Function
17.
Biophys J ; 121(17): 3213-3223, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35918899

ABSTRACT

For patients with heart failure, myocardial ATP level can be reduced to one-half of that observed in healthy controls. This marked reduction (from ≈8 mM in healthy controls to as low as 3-4 mM in heart failure) has been suggested to contribute to impaired myocardial contraction and to the decreased pump function characteristic of heart failure. However, in vitro measures of maximum myofilament force generation, maximum shortening velocity, and the actomyosin ATPase activity show effective KM values for MgATP ranging from ≈10 µM to 150 µM, well below the intracellular ATP level in heart failure. Thus, it is not clear that the fall of myocardial ATP observed in heart failure is sufficient to impair the function of the contractile proteins. Therefore, we tested the effect of low MgATP levels on myocardial contraction using demembranated cardiac muscle preparations that were exposed to MgATP levels typical of the range found in non-failing and failing hearts. Consistent with previous studies, we found that a 50% reduction in MgATP level (from 8 mM to 4 mM) did not reduce maximum force generation or maximum velocity of shortening. However, we found that a 50% reduction in MgATP level caused a 20%-25% reduction in maximal power generation (measured during muscle shortening against a load) and a 20% slowing of cross-bridge cycling kinetics. These results suggest that the decreased cellular ATP level occurring in heart failure contributes to the impaired pump function of the failing heart. Since the ATP-myosin ATPase dissociation constant is estimated to be submillimolar, these findings also suggest that MgATP concentration affects cross-bridge dynamics through a mechanism that is more complex than through the direct dependence of MgATP concentration on myosin ATPase activity. Finally, these studies suggest that therapies targeted to increase adenine nucleotide pool levels in cardiomyocytes might be beneficial for treating heart failure.


Subject(s)
Heart Failure , Myocardium , Adenosine Triphosphate/metabolism , Heart , Humans , Muscle Contraction , Myocardial Contraction , Myocardium/metabolism , Myosins
18.
Function (Oxf) ; 3(4): zqac022, 2022.
Article in English | MEDLINE | ID: mdl-35774590

ABSTRACT

Deep phenotyping of pulmonary hypertension (PH) with multimodal diagnostic exercise interventions can lead to early focused therapeutic interventions. Herein, we report methods to simultaneously assess pulmonary impedance, differential biventricular myocardial strain, and right ventricular:pulmonary arterial (RV:PA) uncoupling during exercise, which we pilot in subjects with suspected PH. As proof-of-concept, we show that four subjects with different diagnoses [pulmonary arterial hypertension (PAH); chronic thromboembolic disease (CTEPH); PH due to heart failure with preserved ejection fraction (PH-HFpEF); and noncardiac dyspnea (NCD)] have distinct patterns of response to exercise. RV:PA coupling assessment with exercise was highest-to-lowest in this order: PAH > CTEPH > PH-HFpEF > NCD. Input impedance (Z0) with exercise was highest in precapillary PH (PAH, CTEPH), followed by PH-HFpEF and NCD. Characteristic impedance (ZC) tended to decline with exercise, except for the PH-HFpEF subject (initial Zc increase at moderate workload with subsequent decrease at higher workload with augmentation in cardiac output). Differential myocardial strain was normal in PAH, CTEPH, and NCD subjects and lower in the PH-HFpEF subject in the interventricular septum. The combination of these metrics allowed novel insights into mechanisms of RV:PA uncoupling. For example, while the PH-HFpEF subject had hemodynamics comparable to the NCD subject at rest, with exercise coupling dropped precipitously, which can be attributed (by decreased myocardial strain of interventricular septum) to poor support from the left ventricle (LV). We conclude that this deep phenotyping approach may distinguish afterload sensitive vs. LV-dependent mechanisms of RV:PA uncoupling in PH, which may lead to novel therapeutically relevant insights.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Noncommunicable Diseases , Pulmonary Arterial Hypertension , Humans , Pulmonary Artery , Heart Failure/diagnosis , Heart Ventricles , Stroke Volume , Hypertension, Pulmonary/diagnosis , Familial Primary Pulmonary Hypertension
19.
Radiol Cardiothorac Imaging ; 4(3): e210224, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35833164

ABSTRACT

Purpose: To measure native T1 values, a marker of diffuse fibrosis, by using cardiac MRI (CMR) in young adults born prematurely. Materials and Methods: This secondary analysis of a prospective cohort study included young adults born moderately to extremely preterm and age-matched, term-born participants. CMR was performed with a 3.0-T imager that included cine imaging for the quantification of left ventricular (LV) and right ventricular (RV) volumes and function and native saturation recovery T1 mapping for the assessment of diffuse myocardial fibrosis. Values between preterm and term were compared by using the Student t test. Associations between T1 values and other variables were analyzed by using linear regression and multivariate regression. Results: Of the 50 young-adult participants, 32 were born preterm (mean age, 25.8 years ± 4.2 [SD]; 23 women) and 18 were born at term (mean age, 26.2 years ± 5.4; 10 women). Native T1 values were significantly higher in participants born preterm than in participants born at term (1477 msec ± 77 vs 1423 msec ± 71, respectively; unadjusted P = .0019). Native T1 values appeared to be positively associated with indexed LV end-diastolic and end-systolic volumes (ß = 2.1, standard error = 0.7 and ß = 3.8, standard error = 1.2, respectively), the RV end-diastolic volume index (ß = 1.3, standard error = 0.6), and the LV mass index (ß = 2.5, standard error = 0.9). Higher T1 values may be associated with reduced cardiac systolic strain measures and diastolic strain measures. Five-minute Apgar scores were inversely associated with native T1 values. Conclusion: Young adults born moderately to extremely preterm exhibited significantly higher native T1 values than age-matched, term-born young adults.Keywords: MRI, Cardiac, Heart, Left Ventricle, CardiomyopathiesClinical trial registration no. NCT03245723Published under a CC BY 4.0 license Supplemental material is available for this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...