Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 4055: 1-73, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26701461

ABSTRACT

The Australian Brush-tailed Phascogale (Phascogale tapoatafa sensu lato) has a broad but highly fragmented distribution around the periphery of the Australian continent and all populations are under significant ongoing threat to survival. A new appraisal of morphological and molecular diversity within the group reveals that the population in the 'Top End' of the Northern Territory is specifically distinct from all others, including those in the Kimberley region of Western Australia to the west and on Cape York of Queensland to the east. The name P. pirata Thomas, 1904 is available for the 'Top End' taxon. Three geographically disjunct populations are distinguished at subspecies level within P. tapoatafa on a suite of external and cranio-dental features; these are found in southeast Australia from South Australia to mid-coastal Queensland (nominotypical tapoatafa), southwest Western Australia (wambenger subsp. nov.), and the Kimberley region of Western Australia (kimberleyensis subsp. nov.). A potential fourth subspecies occurs on Cape York but remains too poorly represented in collections for adequate characterization. Molecular divergence estimates based on partial sequences of the mitochondrial cytochrome b gene indicate that the range disjunction across southern Australia probably dates from the Late Pliocene, with the multiple disjunctions across northern Australia being more recent though almost certainly exceeding 400,000 years. An argument is made for the continued use of the subspecies rank in Australian mammalogy, despite a general lack of consistency in its current application.


Subject(s)
Marsupialia/anatomy & histology , Marsupialia/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Australia , Body Size , DNA, Mitochondrial/genetics , Ecosystem , Female , Male , Marsupialia/genetics , Marsupialia/growth & development , Organ Size , Phylogeny
2.
Mol Phylogenet Evol ; 15(3): 369-80, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10860646

ABSTRACT

Phylogenetic relationships within the genus Muscisaxicola, a primarily Andean group of tyrant-flycatchers, were studied using complete sequences of the mitochondrial genes COII and ND3. Relationships among Muscisaxicola species were found to differ substantially from those of previous views, suggesting convergence in traditional avian taxonomic characters within the genus. The 11 species of large, gray, "typical" Muscisaxicola flycatchers (including M. grisea, newly restored to species status) formed a distinct clade, consisting of two major groups: a clade of 6 species breeding primarily in the central Andes and a clade of 5 species breeding primarily in the southern Andes. The other 2 species traditionally placed in this genus, M. fluviatilis, an Amazonian species, and M. maculirostris, were both rather divergent genetically from the typical species, although M. maculirostris may be the sister taxon to the typical clade. The patterns of sympatry exhibited by Muscisaxicola species in the high Andes appear to be the consequence of speciation and secondary contact within regions of the Andes, rather than a result of dispersal between regions. Diversification of the typical Muscisaxicola species appears to have occurred during the middle and late Pleistocene, suggesting generally that taxa of the high Andes and Patagonia may have been greatly influenced by mid-to-late Pleistocene events. There were likely several independent developments of migration within this genus, but migration is probably ancestral in the southern clade, with subsequent loss of migration in two taxa.


Subject(s)
Birds/genetics , Evolution, Molecular , Animals , Birds/classification , Electron Transport Complex IV/genetics , Emigration and Immigration , Models, Genetic , NADH Dehydrogenase/genetics , Phylogeny , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...