Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Hum Evol ; 192: 103500, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762383

ABSTRACT

Plesiadapiforms (putative stem primates) appear in the fossil record shortly after the Cretaceous/Paleogene boundary and subsequently radiated throughout the Paleocene into a taxonomically and ecomorphologically diverse group. The oldest known plesiadapiforms come from early Puercan (the oldest North American Land Mammal 'age' [NALMA] of the Cenozoic) deposits in northeastern Montana, and all records of Puercan plesiadapiforms are taxonomically restricted to members of the Purgatoriidae and the enigmatic genus Pandemonium. Plesiadapiform diversity substantially increased in the following Torrejonian NALMA, but the sparse record of faunas between the Puercan and the well-known middle and late Torrejonian has hampered our understanding of this important interval in early primate evolution. Here we report new plesiadapiform dental fossils from early Torrejonian (To1) deposits from the Tullock Member of the Fort Union Formation in northeastern Montana that record several poorly known taxa including members of the Purgatoriidae, Paromomyidae and Pandemonium, and that document the largest and most diverse assemblage of To1 plesiadapiforms known. We describe a new species of the purgatoriid Ursolestes (Ursolestes blissorum, sp. nov.) that represents the largest plesiadapiform known from the early Paleocene and, among other taxa, provides additional evidence that the temporal range of purgatoriids extended into the Torrejonian. Large sample sizes of the oldest known paromomyid, Paromomys farrandi, allowed us to document intraspecific variability and one undescribed tooth locus. Our observations illuminate changes in dental morphology of some taxa that occurred in To1 and may inform the acquisition of certain diagnostic plesiadapiform dental characters. We evaluate plesiadapiform species richness, mean body mass and body-mass disparity through the Paleocene and reveal unrecognized levels of richness in To1 and a general trend of stable body mass and body-mass disparity. Our findings contribute to documented patterns of plesiadapiform provincialism in the early Paleocene and shed light on the early stages of their Torrejonian radiation.


Subject(s)
Fossils , Primates , Animals , Fossils/anatomy & histology , Montana , Primates/anatomy & histology , Primates/classification , Biological Evolution , Tooth/anatomy & histology
2.
Biol Lett ; 20(1): 20230335, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38195058

ABSTRACT

The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.


Subject(s)
Mammals , Placenta , Female , Pregnancy , Animals , Primates , Eutheria , Skull
3.
Science ; 376(6588): 80-85, 2022 04.
Article in English | MEDLINE | ID: mdl-35357913

ABSTRACT

Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.


Subject(s)
Brain , Eutheria , Extinction, Biological , Animals , Body Size , Brain/anatomy & histology , Brain/growth & development , Eutheria/anatomy & histology , Eutheria/classification , Eutheria/growth & development , Female , Fossils , Organ Size , Phylogeny
4.
J Mamm Evol ; 28(4): 1083-1143, 2021.
Article in English | MEDLINE | ID: mdl-34924738

ABSTRACT

Taeniolabis taoensis is an iconic multituberculate mammal of early Paleocene (Puercan 3) age from the Western Interior of North America. Here we report the discovery of significant new skull material (one nearly complete cranium, two partial crania, one nearly complete dentary) of T. taoensis in phosphatic concretions from the Corral Bluffs study area, Denver Formation (Danian portion), Denver Basin, Colorado. The new skull material provides the first record of the species from the Denver Basin, where the lowest in situ specimen occurs in river channel deposits ~730,000 years after the Cretaceous-Paleogene boundary, roughly coincident with the first appearance of legumes in the basin. The new material, in combination with several previously described and undescribed specimens from the Nacimiento Formation of the San Juan Basin, New Mexico, is the subject of detailed anatomical study, aided by micro-computed tomography. Our analyses reveal many previously unknown aspects of skull anatomy. Several regions (e.g., anterior portions of premaxilla, orbit, cranial roof, occiput) preserved in the Corral Bluffs specimens allow considerable revision of previous reconstructions of the external cranial morphology of T. taoensis. Similarly, anatomical details of the ascending process of the dentary are altered in light of the new material. Although details of internal cranial anatomy (e.g., nasal and endocranial cavities) are difficult to discern in the available specimens, we provide, based on UCMP 98083 and DMNH.EPV 95284, the best evidence to date for inner ear structure in a taeniolabidoid multituberculate. The cochlear canal of T. taoensis is elongate and gently curved and the vestibule is enlarged, although to a lesser degree than in Lambdopsalis.

5.
Ecol Evol ; 11(21): 14540-14554, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765124

ABSTRACT

The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.

6.
R Soc Open Sci ; 8(2): 210050, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33972886

ABSTRACT

Plesiadapiform mammals, as stem primates, are key to understanding the evolutionary and ecological origins of Pan-Primates and Euarchonta. The Purgatoriidae, as the geologically oldest and most primitive known plesiadapiforms and one of the oldest known placental groups, are also central to the evolutionary radiation of placentals and the Cretaceous-Palaeogene biotic recovery on land. Here, we report new dental fossils of Purgatorius from early Palaeocene (early Puercan) age deposits in northeastern Montana that represent the earliest dated occurrences of plesiadapiforms. We constrain the age of these earliest purgatoriids to magnetochron C29R and most likely to within 105-139 thousand years post-K/Pg boundary. Given the occurrence of at least two species, Purgatorius janisae and a new species, at the locality, we provide the strongest support to date that purgatoriids and, by extension, Pan-Primates, Euarchonta and Placentalia probably originated by the Late Cretaceous. Within 1 million years of their arrival in northeastern Montana, plesiadapiforms outstripped archaic ungulates in numerical abundance and dominated the arboreal omnivore-frugivore niche in mammalian local faunas.

7.
J Anat ; 236(1): 21-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31667836

ABSTRACT

The end-Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non-avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high-resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini, which belong to a cluster of 'archaic' placental mammals called 'arctocyonid condylarths' that thrived during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long-mysterious 'arctocyonids', and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12-0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.


Subject(s)
Biological Evolution , Ear, Inner/anatomy & histology , Eutheria/anatomy & histology , Fossils , Skull/anatomy & histology , Animals , Ear, Inner/diagnostic imaging , Phylogeny , Skull/diagnostic imaging , Tomography, X-Ray Computed
8.
J Hum Evol ; 128: 76-92, 2019 03.
Article in English | MEDLINE | ID: mdl-30825983

ABSTRACT

Plesiadapiforms, like other Paleogene mammals, are known mostly from fossil teeth and jaw fragments. The several families of plesiadapiforms known from partial skeletons have all been reconstructed as arborealists, but differences in postcranial morphology among these taxa indicate a diversity of positional behaviors. Here we provide the first detailed descriptions and comparisons of a dentally associated partial skeleton (NMMNH P-54500) and of the most complete dentary with anterior teeth (NMMNH P-71598) pertaining to Torrejonia wilsoni, from the early Paleocene (late Torrejonian To3 interval zone) of the Nacimiento Formation, San Juan Basin, New Mexico, USA. NMMNH P-54500 is the oldest known partial skeleton of a plesiadapiform and the only known postcrania for the Palaechthonidae. This skeleton includes craniodental fragments with all permanent teeth fully erupted, and partial forelimbs and hind limbs with some epiphyses unfused, indicating that this individual was a nearly fully-grown subadult. Analysis of the forelimb suggests mobile shoulder and elbow joints, a habitually flexed forearm, and capacity for manual grasping. The hip joint allowed abduction and lateral rotation of the thigh and provides evidence for frequent orthograde postures on large diameter supports. Other aspects of the hind limb suggest a habitually flexed thigh and knee with no evidence for specialized leaping, and mobile ankle joints capable of high degrees of inversion and eversion. Although it is likely that some variability exists within the group, analysis of this skeleton suggests that palaechthonids are most like paromomyids among plesiadapiforms, but retain more plesiomorphic postcranial features than has been documented for the Paromomyidae. These observations are congruent with craniodental evidence supporting palaechthonids and paromomyids as closely related within the Paromomyoidea. The skeleton of T. wilsoni also demonstrates that many regions of the postcranium were already well adapted for arboreality within the first few million years of the diversification of placental mammals following the Cretaceous-Paleogene extinction event.


Subject(s)
Bone and Bones/anatomy & histology , Fossils/anatomy & histology , Primates/anatomy & histology , Animals , Life History Traits , Mammals/anatomy & histology , Mammals/classification , New Mexico , Paleontology , Primates/classification , Primates/physiology
9.
J Hum Evol ; 128: 103-131, 2019 03.
Article in English | MEDLINE | ID: mdl-30497682

ABSTRACT

Omomyiform primates are among the most basal fossil haplorhines, with the oldest classified in the genus Teilhardina and known contemporaneously from Asia, Europe, and North America during the Paleocene-Eocene Thermal Maximum (PETM) ∼56 mya. Characterization of morphology in this genus has been limited by small sample sizes and fragmentary fossils. A new dental sample (n = 163) of the North American species Teilhardina brandti from PETM strata of the Bighorn Basin, Wyoming, documents previously unknown morphology and variation, prompting the need for a systematic revision of the genus. The P4 of T. brandti expresses a range of variation that encompasses that of the recently named, slightly younger North American species 'Teilhardina gingerichi,' which is here synonymized with T. brandti. A new partial dentary preserving the alveoli for P1-2 demonstrates that T. brandti variably expresses an unreduced, centrally-located P1, and in this regard is similar to that of T. asiatica from China. This observation, coupled with further documentation of variability in P1 alveolar size, position, and presence in the European type species T. belgica, indicates that the original diagnosis of T. asiatica is insufficient at distinguishing this species from either T. belgica or T. brandti. Likewise, the basal omomyiform 'Archicebus achilles' requires revision to be distinguished from Teilhardina. Results from a phylogenetic analysis of 1890 characters scored for omomyiforms, adapiforms, and other euarchontan mammals produces a novel clade including T. magnoliana, T. brandti, T. asiatica, and T. belgica to the exclusion of two species previously referred to Teilhardina, which are here classified in a new genus (Bownomomys americanus and Bownomomys crassidens). While hypotheses of relationships and inferred biogeographic patterns among species of Teilhardina could change with the discovery of more complete fossils, the results of these analyses indicate a similar probability that the genus originated in either Asia or North America.


Subject(s)
Animal Distribution , Fossils/anatomy & histology , Primates/anatomy & histology , Animals , Asia , Europe , North America , Primates/classification
10.
R Soc Open Sci ; 4(5): 170329, 2017 May.
Article in English | MEDLINE | ID: mdl-28573038

ABSTRACT

Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62 Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first postcranial elements recovered for a palaechthonid. Results from a cladistic analysis that includes new data from this skeleton suggest that palaechthonids are a paraphyletic group of stem primates, and that T. wilsoni is most closely related to paromomyids. New evidence from the appendicular skeleton of T. wilsoni fails to support an influential hypothesis based on inferences from craniodental morphology that palaechthonids were terrestrial. Instead, the postcranium of T. wilsoni indicates that it was similar to that of all other plesiadapiforms for which skeletons have been recovered in having distinct specializations consistent with arboreality.

11.
Evol Anthropol ; 26(2): 74-94, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28429568

ABSTRACT

Very shortly after the disappearance of the non-avian dinosaurs, the first mammals that had features similar to those of primates started appearing. These first primitive forms went on to spawn a rich diversity of plesiadapiforms, often referred to as archaic primates. Like many living primates, plesiadapiforms were small arboreal animals that generally ate fruit, insects, and, occasionally, leaves. However, this group lacked several diagnostic features of euprimates. They also had extraordinarily diverse specializations, represented in eleven families and more than 140 species, which, in some cases, were like nothing seen since in the primate order. Plesiadapiforms are known from all three Northern continents, with representatives that persisted until at least 37 million years ago. In this article we provide a summary of the incredible diversity of plesiadapiform morphology and adaptations, reviewing our knowledge of all eleven families. We also discuss the challenges that remain in our understanding of their ecology and evolution.


Subject(s)
Biological Evolution , Fossils , Primates , Animals , Anthropology, Physical , Bone and Bones/anatomy & histology , Phylogeny , Primates/anatomy & histology , Primates/classification , Tooth/anatomy & histology
12.
J Hum Evol ; 96: 58-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27343772

ABSTRACT

Paleogene micromomyids are small (∼10-40 g) euarchontan mammals with primate-like molars and postcrania suggestive of committed claw-climbing positional behaviors, similar to those of the extant arboreal treeshrew, Ptilocercus. Based primarily on evidence derived from dental and postcranial morphology, micromomyids have alternately been allied with plesiadapiforms, Dermoptera (colugos), or Primatomorpha (Primates + Dermoptera) within Euarchonta. Partial crania described here of Paleocene Dryomomys szalayi and Eocene Tinimomys graybulliensis from the Clarks Fork Basin of Wyoming are the first known for the family Micromomyidae. The cranium of D. szalayi exhibits a distinct, small groove near the lateral extreme of the promontorium, just medial to the fenestra vestibuli, the size of which suggests that the internal carotid artery was non-functional, as has been inferred for paromomyid and plesiadapid plesiadapiforms, but not for Eocene euprimates, carpolestids, and microsyopids. On the other hand, D. szalayi is similar to fossil euprimates and plesiadapoids in having a bullar morphology consistent with an origin that is at least partially petrosal, unlike that of paromomyids and microsyopids, although this interpretation will always be tentative in fossils that lack exhaustive ontogenetic data. Micromomyids differ from all other known plesiadapiforms in having an inflated cochlear part of the bony labyrinth and a highly pneumatized squamosal and mastoid region with associated septa. Cladistic analyses that include new cranial data, regardless of how bullar composition is coded in plesiadapiforms, fail to support either Primatomorpha or a close relationship between micromomyids and dermopterans, instead suggesting that micromomyids are among the most primitive known primates.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Primates/anatomy & histology , Skull/anatomy & histology , Animals , Phylogeny
13.
Biol Lett ; 11(1): 20140911, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25589486

ABSTRACT

Small-bodied, insectivorous Nyctitheriidae are known in the Palaeogene fossil record almost exclusively from teeth and fragmentary jaws and have been referred to Eulipotyphla (shrews, moles and hedgehogs) based on dental similarities. By contrast, isolated postcrania attributed to the group suggest arboreality and a relationship to Euarchonta (primates, treeshrews and colugos). Cretaceous-Palaeocene adapisoriculid insectivores have also been proposed as early euarchontans based on postcranial similarities. We describe the first known dentally associated nyctitheriid auditory regions and postcrania, and use them to test the proposed relationship to Euarchonta with cladistic analyses of 415 dental, cranial and postcranial characteristics scored for 92 fossil and extant mammalian taxa. Although nyctitheriid postcrania share similarities with euarchontans likely related to arboreality, results of cladistic analyses suggest that nyctitheriids are closely related to Eulipotyphla. Adapisoriculidae is found to be outside of crown Placentalia. These results suggest that similarities in postcranial morphology among nyctitheriids, adapisoriculids and euarchontans represent separate instances of convergence or primitive retention of climbing capabilities.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Mammals/classification , Phylogeny , Animals , Mammals/anatomy & histology , Skull/anatomy & histology , Tooth/anatomy & histology
14.
Proc Natl Acad Sci U S A ; 112(5): 1487-92, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605875

ABSTRACT

Earliest Paleocene Purgatorius often is regarded as the geologically oldest primate, but it has been known only from fossilized dentitions since it was first described half a century ago. The dentition of Purgatorius is more primitive than those of all known living and fossil primates, leading some researchers to suggest that it lies near the ancestry of all other primates; however, others have questioned its affinities to primates or even to placental mammals. Here we report the first (to our knowledge) nondental remains (tarsal bones) attributed to Purgatorius from the same earliest Paleocene deposits that have yielded numerous fossil dentitions of this poorly known mammal. Three independent phylogenetic analyses that incorporate new data from these fossils support primate affinities of Purgatorius among euarchontan mammals (primates, treeshrews, and colugos). Astragali and calcanei attributed to Purgatorius indicate a mobile ankle typical of arboreal euarchontan mammals generally and of Paleocene and Eocene plesiadapiforms specifically and provide the earliest fossil evidence of arboreality in primates and other euarchontan mammals. Postcranial specializations for arboreality in the earliest primates likely played a key role in the evolutionary success of this mammalian radiation in the Paleocene.


Subject(s)
Fossils , Primates/anatomy & histology , Tarsal Bones/anatomy & histology , Animals , Phylogeny
15.
J Morphol ; 275(3): 313-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24288155

ABSTRACT

The presence of a stable thoracolumbar region, found in many arboreal mammals, is considered advantageous for bridging and cantilevering between discontinuous branches. However, no study has directly explored the link between osteological features cited as enhancing axial stability and the frequency of cantilevering and bridging behaviors in a terminal branch environment. To fill this gap, we collected metric data on costal and vertebral morphology of primate and nonprimate mammals known to cantilever and bridge frequently and those that do not. We also quantified the frequency and duration of cantilevering and bridging behaviors using experimental setups for species that have been reported to show differences in use of small branches and back anatomy (Caluromys philander, Loris tardigradus, Monodelphis domestica, and Cheirogaleus medius). Phylogenetically corrected principal component analysis reveals that taxa employing frequent bridging and cantilevering (C. philander and lorises) also exhibit reduced intervertebral and intercostal spaces, which can serve to increase thoracolumbar stability, when compared to closely related species (M. domestica and C. medius). We observed C. philander cantilevering and bridging significantly more often than M. domestica, which never cantilevered or crossed any arboreal gaps. Although no difference in the frequency of cantilevering was observed between L. tardigradus and C. medius, the duration of cantilevering bouts was significantly greater in L. tardigradus. These data suggest that osteological features promoting axial rigidity may be part of a morpho-behavioral complex that increases stability in mammals moving and foraging in a terminal branch environment.


Subject(s)
Mammals/anatomy & histology , Mammals/physiology , Spine/anatomy & histology , Spine/physiology , Animals , Biological Evolution , Biomechanical Phenomena , Body Weights and Measures , Cheirogaleidae/anatomy & histology , Cheirogaleidae/physiology , Locomotion , Lorisidae/anatomy & histology , Lorisidae/physiology , Opossums/anatomy & histology , Opossums/physiology , Phylogeny , Posture , Sciuridae/anatomy & histology , Sciuridae/physiology , Species Specificity
16.
Am J Phys Anthropol ; 152 Suppl 57: 33-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24249591

ABSTRACT

Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in ancestral euprimates.


Subject(s)
Biological Evolution , Fossils , Hand Bones , Hand , Primates , Animals , Hand/anatomy & histology , Hand/physiology , Hand Bones/anatomy & histology , Hand Bones/physiology , Locomotion/physiology , Primates/anatomy & histology , Primates/physiology , Principal Component Analysis
17.
J Hum Evol ; 65(2): 109-42, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23850536

ABSTRACT

New specimens of micromomyid plesiadapiforms recovered from the late Paleocene and early Eocene of the Clarks Fork and Powder River Basins, Wyoming, include previously unknown tooth positions of Chalicomomys antelucanus, the earliest record and first substantial Paleocene sample of Tinimomys graybulliensis, and additional specimens of early Eocene T. graybulliensis, forming the largest known sample (n = 84, MNI = 14) of a micromomyid species from a single fossil locality. These specimens and newly documented intraspecific variability, coupled with the first detailed descriptions of the dentition of Dryomomys szalayi, allow for a systematic revision of the family. Cladistic analysis of the 11 known micromomyid species using 28 morphological characters produced three most-parsimonious cladograms. Results suggest that several Tiffanian taxa previously classified in the genus Micromomys (excluding the type species Micromomys silvercouleei) are more primitive and are referred to a new genus Foxomomys (Foxomomys fremdi, Foxomomys vossae, and Foxomomys gunnelli). Two other Paleocene and early Eocene species previously classified in Micromomys are instead found to share a special relationship with Dryomomys (Dryomomys millennius and Dryomomys willwoodensis) based primarily on the relative size and shape of the premolars. Results further suggest that early Eocene Chalicomomys (monotypic: Chalicomomys antelucanus) is the sister taxon to a clade that includes Dryomomys and Tinimomys, which diverged from each other by the late Tiffanian. The shape of P4 and the relative size of P(3) have distinct patterns of change through the evolution of the group. Additionally, there is a gradual reduction of P2, with Foxomomys having a double-rooted P2, Micromomys, Chalicomomys, and Dryomomys having a single-rooted P2, and Tinimomys lacking a P2. Body size increases from more primitive micromomyids (Foxomomys and Chalicomomys) to more derived genera (Dryomomys and Tinimomys), and size also increases from the older and/or more primitive species within the Dryomomys and Tinimomys lineages.


Subject(s)
Bone and Bones/anatomy & histology , Dentition , Fossils , Primates/anatomy & histology , Primates/classification , Animals , Biological Evolution , Canada , Phylogeny , United States
18.
BMC Evol Biol ; 12: 103, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22741925

ABSTRACT

BACKGROUND: When simple sequence repeats are integrated into functional genes, they can potentially act as evolutionary 'tuning knobs', supplying abundant genetic variation with minimal risk of pleiotropic deleterious effects. The genetic basis of variation in facial shape and length represents a possible example of this phenomenon. Runt-related transcription factor 2 (RUNX2), which is involved in osteoblast differentiation, contains a functionally-important tandem repeat of glutamine and alanine amino acids. The ratio of glutamines to alanines (the QA ratio) in this protein seemingly influences the regulation of bone development. Notably, in domestic breeds of dog, and in carnivorans in general, the ratio of glutamines to alanines is strongly correlated with facial length. RESULTS: In this study we examine whether this correlation holds true across placental mammals, particularly those mammals for which facial length is highly variable and related to adaptive behavior and lifestyle (e.g., primates, afrotherians, xenarthrans). We obtained relative facial length measurements and RUNX2 sequences for 41 mammalian species representing 12 orders. Using both a phylogenetic generalized least squares model and a recently-developed Bayesian comparative method, we tested for a correlation between genetic and morphometric data while controlling for phylogeny, evolutionary rates, and divergence times. Non-carnivoran taxa generally had substantially lower glutamine-alanine ratios than carnivorans (primates and xenarthrans with means of 1.34 and 1.25, respectively, compared to a mean of 3.1 for carnivorans), and we found no correlation between RUNX2 sequence and face length across placental mammals. CONCLUSIONS: Results of our diverse comparative phylogenetic analyses indicate that QA ratio does not consistently correlate with face length across the 41 mammalian taxa considered. Thus, although RUNX2 might function as a 'tuning knob' modifying face length in carnivorans, this relationship is not conserved across mammals in general.


Subject(s)
Biological Evolution , Core Binding Factor Alpha 1 Subunit/genetics , Face/anatomy & histology , Mammals/genetics , Tandem Repeat Sequences , Animals , Bayes Theorem , Carnivora/genetics , Phylogeny , Sequence Analysis, DNA
19.
Science ; 335(6071): 959-62, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22363006

ABSTRACT

Body size plays a critical role in mammalian ecology and physiology. Previous research has shown that many mammals became smaller during the Paleocene-Eocene Thermal Maximum (PETM), but the timing and magnitude of that change relative to climate change have been unclear. A high-resolution record of continental climate and equid body size change shows a directional size decrease of ~30% over the first ~130,000 years of the PETM, followed by a ~76% increase in the recovery phase of the PETM. These size changes are negatively correlated with temperature inferred from oxygen isotopes in mammal teeth and were probably driven by shifts in temperature and possibly high atmospheric CO(2) concentrations. These findings could be important for understanding mammalian evolutionary responses to future global warming.


Subject(s)
Biological Evolution , Climate Change , Equidae/anatomy & histology , Fossils , Horses/anatomy & histology , Animals , Atmosphere , Body Size , Carbon Dioxide/analysis , Global Warming , Humidity , Oxygen Isotopes/analysis , Temperature , Wyoming
20.
Am J Phys Anthropol ; 146(2): 281-305, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21842495

ABSTRACT

More than 25 new specimens of Teilhardina brandti, one of the oldest known euprimates, are reported from earliest Eocene strata of the southern Bighorn Basin, Wyoming. The new fossils include the first upper dentitions, a dentary showing the lower dental formula for the first time, and the first postcrania ascribed to T. brandti (tarsals and terminal phalanges). The elongated navicular and long talar neck suggest that T. brandti was an active arboreal quadruped, and the terminal phalanges constitute the oldest evidence for nails in Euprimates. Phylogenetic analysis incorporating the new data indicates that T. brandti is more derived than T. belgica but less so than T. americana. The hypothesis that Teilhardina originated in Asia (T. asiatica) and dispersed westward to Europe (T. belgica) and then to North America (T. brandti and T. magnoliana) during the earliest Eocene Paleocene-Eocene Thermal Maximum is most consistent with available evidence, including the relative age of fossil samples and their stage of evolution.


Subject(s)
Fossils , Haplorhini/anatomy & histology , Animals , Behavior, Animal/physiology , Computational Biology , Finger Phalanges/anatomy & histology , Haplorhini/classification , Haplorhini/genetics , Mandible/anatomy & histology , Maxilla/anatomy & histology , Nails/anatomy & histology , Phylogeny , Tarsal Bones/anatomy & histology , Tooth/anatomy & histology , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...