Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 5842, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992037

ABSTRACT

Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner. Systemic administration of STINGa ADCs in mice leads to STING activation in tumors, with increased anti-tumor activity and reduced serum cytokine elevations compared to a free STING agonist. Furthermore, STINGa ADCs induce type III interferons, which contribute to the anti-tumor activity by upregulating type I interferon and other key chemokines/cytokines. These findings reveal an important role for type III interferons in the anti-tumor activity elicited by STING agonism and provide rationale for the clinical development of tumor cell-directed STINGa ADCs.


Subject(s)
Immunity, Innate , Immunoconjugates , Interferons , Membrane Proteins , Animals , Membrane Proteins/agonists , Membrane Proteins/immunology , Immunity, Innate/drug effects , Female , Humans , Mice , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/administration & dosage , Interferons/metabolism , Interferon Lambda , Neoplasms/immunology , Neoplasms/drug therapy , Interferon Type I/immunology , Cytokines/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Immunotherapy/methods , Mice, Inbred C57BL , Receptors, IgG/agonists , Receptors, IgG/metabolism , Receptors, IgG/immunology
2.
Mol Cancer Ther ; 22(9): 999-1012, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37294948

ABSTRACT

Antibody-drug conjugates (ADC) achieve targeted drug delivery to a tumor and have demonstrated clinical success in many tumor types. The activity and safety profile of an ADC depends on its construction: antibody, payload, linker, and conjugation method, as well as the number of payload drugs per antibody [drug-to-antibody ratio (DAR)]. To allow for ADC optimization for a given target antigen, we developed Dolasynthen (DS), a novel ADC platform based on the payload auristatin hydroxypropylamide, that enables precise DAR-ranging and site-specific conjugation. We used the new platform to optimize an ADC that targets B7-H4 (VTCN1), an immune-suppressive protein that is overexpressed in breast, ovarian, and endometrial cancers. XMT-1660 is a site-specific DS DAR 6 ADC that induced complete tumor regressions in xenograft models of breast and ovarian cancer as well as in a syngeneic breast cancer model that is refractory to PD-1 immune checkpoint inhibition. In a panel of 28 breast cancer PDXs, XMT-1660 demonstrated activity that correlated with B7-H4 expression. XMT-1660 has recently entered clinical development in a phase I study (NCT05377996) in patients with cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Humans , Female , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antibodies , Cell Line, Tumor , Xenograft Model Antitumor Assays
3.
Nat Med ; 23(10): 1150-1157, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846097

ABSTRACT

Growth differentiation factor 15 (GDF15), a distant member of the transforming growth factor (TGF)-ß family, is a secreted protein that circulates as a 25-kDa dimer. In humans, elevated GDF15 correlates with weight loss, and the administration of GDF15 to mice with obesity reduces body weight, at least in part, by decreasing food intake. The mechanisms through which GDF15 reduces body weight remain poorly understood, because the cognate receptor for GDF15 is unknown. Here we show that recombinant GDF15 induces weight loss in mice fed a high-fat diet and in nonhuman primates with spontaneous obesity. Furthermore, we find that GDF15 binds with high affinity to GDNF family receptor α-like (GFRAL), a distant relative of receptors for a distinct class of the TGF-ß superfamily ligands. Gfral is expressed in neurons of the area postrema and nucleus of the solitary tract in mice and humans, and genetic deletion of the receptor abrogates the ability of GDF15 to decrease food intake and body weight in mice. In addition, diet-induced obesity and insulin resistance are exacerbated in GFRAL-deficient mice, suggesting a homeostatic role for this receptor in metabolism. Finally, we demonstrate that GDF15-induced cell signaling requires the interaction of GFRAL with the coreceptor RET. Our data identify GFRAL as a new regulator of body weight and as the bona fide receptor mediating the metabolic effects of GDF15, enabling a more comprehensive assessment of GDF15 as a potential pharmacotherapy for the treatment of obesity.


Subject(s)
Eating/drug effects , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/genetics , Obesity/metabolism , Weight Loss/drug effects , Animals , Diet, High-Fat , Eating/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Humans , Macaca fascicularis , Mice , Mice, Knockout , Weight Loss/genetics
4.
PLoS One ; 10(10): e0140694, 2015.
Article in English | MEDLINE | ID: mdl-26492563

ABSTRACT

TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation.


Subject(s)
Antigens, CD/metabolism , Interleukin-2/metabolism , Membrane Proteins/metabolism , NFATC Transcription Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Genes, Reporter , Hepatitis A Virus Cellular Receptor 2 , Humans , Lymphocyte Activation/immunology , Membrane Proteins/chemistry , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
5.
J Mol Recognit ; 25(3): 147-54, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22407978

ABSTRACT

Immunoglobulin G (IgG) antibodies are an integral part of the adaptive immune response that provide a direct link between humoral and cellular components of the immune system. Insights into relationships between the structure and function of human IgGs have prompted molecular engineering efforts to enhance or eliminate specific properties, such as Fc-mediated immune effector functions. Human IgGs have an N-glycosylation site at Asn297, located in the second heavy chain constant region (CH2). The composition of the Fc glycan can have substantial impacts on Fc gamma receptor(FcγR) binding. The removal of the glycan through enzymatic deglycosylation or mutagenesis of the N-linked glycosylation site has been reported to "silence" FcγR-binding and effector functions, particularly with assays that measure monomeric binding. However, interactions between IgGs and FcγRs are not limited to monomeric interactions but can be influenced by avidity, which takes into account the sum of multimeric interactions between antigen-engaged IgGs and FcγRs. We show here that under in vitro conditions, which allowed avidity binding, aglycosylated IgGs can bind to one of the FcγRs, FcγRI, and mediate effector functions. These studies highlight how the valency of a molecular interaction (monomeric binding versus avidity binding) can influence antibody/FcγR interactions such that avidity effects can translate very low intrinsic affinities into significant functional outcomes.


Subject(s)
Antibody Affinity , Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Animals , Antigens, CD/immunology , Binding, Competitive , Cell Proliferation , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/chemistry , Macrophages/immunology , Macrophages/physiology , Mice , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Phagocytosis/immunology , Protein Binding , Receptors, IgG/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/physiology
6.
Eur J Pharmacol ; 616(1-3): 346-52, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19577557

ABSTRACT

Plasma cell membrane glycoprotein-1, or ectonucleotide pyrophosphatase/phosphodieterase (PC-1/ENPP1) has been shown to inhibit insulin signaling in cultured cells in vitro and in transgenic mice in vivo when overexpressed. Furthermore, both genetic polymorphism and increased expression of PC-1 have been reported to be associated with type 2 diabetes in humans. Thus it was proposed that PC-1 inhibition represents a potential strategy for the treatment of type 2 diabetes. However, it has not been proven that suppression of PC-1 expression or inhibition of its function will actually improve insulin sensitivity. We show in the current study that transient overexpression of PC-1 inhibits insulin-stimulated insulin receptor tyrosine phosphorylation in HEK293 cells, while knockdown of PC-1 with siRNA significantly increases insulin-stimulated Akt phosphorylation in HuH7 human hepatoma cells. Adenoviral vector expressing a short hairpin RNA against mouse PC-1 (PC-1shRNA) was utilized to efficiently knockdown PC-1 expression in the livers of db/db mice. In comparison with db/db mice treated with a control virus, db/db mice treated with the PC-1shRNA adenovirus had approximately 80% lower hepatic PC-1 mRNA levels, approximately 30% lower ambient fed plasma glucose, approximately 25% lower fasting plasma glucose, and significantly improved oral glucose tolerance. Taken together, these results demonstrate that suppression of PC-1 expression improves insulin sensitivity in vitro and in an animal model of diabetes, supporting the proposition that PC-1 inhibition is a potential therapeutic approach for the treatment of type 2 diabetes.


Subject(s)
Down-Regulation , Insulin/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Adenoviridae/genetics , Animals , Blood Glucose/metabolism , Cell Line , Fasting , Gene Knockdown Techniques , Hepatocytes/metabolism , Humans , Male , Mice , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Signal Transduction/genetics , Time Factors , Transfection , Tyrosine/metabolism
7.
Eur J Pharmacol ; 606(1-3): 17-24, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19374858

ABSTRACT

Plasma cell membrane glycoprotein-1 or ectonucleotide pyrophosphatase/phosphodiesterase (PC-1/ENPP1) has been shown to inhibit insulin signaling, and its genetic polymorphism or increased expression is associated with type 2 diabetes in humans. Therefore, PC-1 inhibition represents a potential strategy in treating diabetes. Since patients with phosphodiesterase/pyrophosphatase deficient PC-1 manifest abnormal calcification, enhancing insulin signaling by inhibiting PC-1 for the treatment of diabetes will be feasible only if PC-1 phosphodiesterase/pyrophosphatase activity needs not be significantly diminished. However, whether inhibition of insulin receptor signaling by PC-1 is dependent upon its phosphodiesterase/pyrophosphatase activity remains controversial. In this study, the extracellular domain of the human PC-1 in its native form or with a T256A or T256S mutation was overexpressed and purified. Enzymatic assays showed that both mutants have less than 10% of the activity of the wild-type protein. In HEK293 cells stably expressing recombinant insulin receptor or insulin-like growth factor 1 (IGF1) receptor, transient expression of wild-type full length PC-1 (PC-1.FL.WT) but not the T256A or T256S mutants inhibits insulin signaling without affecting IGF1 signaling. Western blot and FACS analysis showed that the wild-type and mutant full length PC-1 proteins are expressed at similar levels in the cells, and were localized to the similar levels on the cell surface. Overexpression of PC-1.FL.WT did not affect insulin receptor mRNA level, total protein and cell surface levels. Together, these results suggest that the inhibition of insulin signaling by PC-1 is somewhat specific and is dependent upon the enzymatic activity of the phosphodiesterase/pyrophosphatase.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Signal Transduction , Cell Line , Gene Expression Regulation, Enzymologic , Humans , Insulin-Like Growth Factor I/metabolism , Mutation , Phosphoric Diester Hydrolases/deficiency , Phosphoric Diester Hydrolases/genetics , Protein Transport , Pyrophosphatases/deficiency , Pyrophosphatases/genetics , Receptor, Insulin/genetics , Transfection
8.
FEBS Lett ; 579(17): 3855-8, 2005 Jul 04.
Article in English | MEDLINE | ID: mdl-15978577

ABSTRACT

Receptor-like protein tyrosine phosphatases (RPTPs) are type I integral membrane proteins. Together with protein tyrosine kinases, RPTPs regulate the phosphotyrosine levels in the cell. Studies of two RPTPs, CD45 and PTPalpha, have provided strong evidence that dimerization leads to inactivation of the receptors, and that the dimerization of PTPalpha involves interactions in the transmembrane domain (TMD). Using the TOXCAT assay, a genetic approach for analyzing TM interactions in Escherichia coli membranes, we show that the TMD of RPTPs interact in the membrane, albeit to different extents. Using fusion proteins of TMDs, we also observe an equilibrium between monomer and dimer in sodium dodecyl sulfate (SDS) micelles. Through a mutational study of the DEP1 TMD, we demonstrate that these interactions are specific. Taken together, our results define a subset of the RPTP family in which TM homodimerization may act as a mediator of protein function.


Subject(s)
Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Biological Assay , Cell Membrane/metabolism , DNA Mutational Analysis , Dimerization , Escherichia coli/metabolism , Humans , Micelles , Molecular Sequence Data , Protein Structure, Tertiary , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Sodium Dodecyl Sulfate/chemistry
9.
FEBS Lett ; 555(1): 122-5, 2003 Nov 27.
Article in English | MEDLINE | ID: mdl-14630331

ABSTRACT

The folding of alpha-helical membrane proteins has previously been described using the two stage model, in which the membrane insertion of independently stable alpha-helices is followed by their mutual interactions within the membrane to give higher order folding and oligomerization. Given recent advances in our understanding of membrane protein structure it has become apparent that in some cases the model may not fully represent the folding process. Here we present a three stage model which gives considerations to ligand binding, folding of extramembranous loops, insertion of peripheral domains and the formation of quaternary structure.


Subject(s)
Membrane Proteins/chemistry , Aquaporins/chemistry , Bacterial Proteins/chemistry , Bacteriorhodopsins/chemistry , Binding Sites , Escherichia coli Proteins/chemistry , Ligands , Lipid Bilayers/chemistry , Models, Molecular , Potassium Channels/chemistry , Protein Folding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
10.
Mol Pharmacol ; 64(3): 570-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12920192

ABSTRACT

The human cannabinoid receptor 1 (CB1) belongs to the G protein-coupled receptor (GPCR) family. Among the members of GPCR family, it has an exceptionally long extracellular N-terminal domain (N-tail) of 116 amino acids but has no typical signal sequence. This poses questions of how the long N-tail affects the biosynthesis of the receptor and of how it is inserted into the endoplasmic reticulum (ER) membrane. Here we have examined the process of membrane assembly of CB1 in the ER membrane and the maturation of the receptor from the ER to the plasma membrane. We find that the long N-tail cannot be efficiently translocated across the ER membrane, causing the rapid degradation of CB1 by proteasomes; this leads to a low level of expression of the receptor at the plasma membrane. The addition of a signal peptide at the N terminus of CB1 or shortening of the long N-tail greatly enhances the stability and cell surface expression of the receptor without affecting receptor binding to a cannabinoid ligand, CP-55,940. We propose that the N-tail translocation is a crucial early step in biosynthesis of the receptor and may play a role in regulating the stability and surface expression of CB1.


Subject(s)
Cannabinoids/metabolism , Intracellular Membranes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Receptors, Drug/chemistry , Receptors, Drug/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cricetinae , Cyclohexanols/metabolism , Endoplasmic Reticulum/metabolism , Humans , Protein Binding/physiology , Receptors, Cannabinoid
11.
Trends Biochem Sci ; 27(5): 231-4, 2002 May.
Article in English | MEDLINE | ID: mdl-12076534

ABSTRACT

Over recent years, much progress has been made in the identification and characterization of factors involved in the biosynthesis of integral membrane proteins of the helix-bundle type. In addition, our knowledge of membrane protein structure and the forces stabilizing helix-helix interactions in a lipid environment is expanding rapidly. However, it is still not clear how a membrane protein folds into its final form in vivo, nor what constraints there are on the folded structure that results from the mechanistic details of translocon-mediated assembly rather than simply from the thermodynamics of protein-lipid interactions.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Transport/physiology , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Models, Molecular , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Proc Natl Acad Sci U S A ; 99(5): 2690-5, 2002 Mar 05.
Article in English | MEDLINE | ID: mdl-11867724

ABSTRACT

We present an approach that allows rapid determination of the topology of Escherichia coli inner-membrane proteins by a combination of topology prediction and limited fusion-protein analysis. We derive new topology models for 12 inner-membrane proteins: MarC, PstA, TatC, YaeL, YcbM, YddQ, YdgE, YedZ, YgjV, YiaB, YigG, and YnfA. We estimate that our approach should make it possible to arrive at highly reliable topology models for roughly 10% of the approximately 800 inner-membrane proteins thought to exist in E. coli.


Subject(s)
Bacterial Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Escherichia coli/metabolism , Membrane Proteins/metabolism , Alkaline Phosphatase , Cyclin-Dependent Kinases/genetics , Escherichia coli Proteins , Genes, Reporter , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL