Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447850

ABSTRACT

In the field of bone tissue engineering, biomimetic scaffold utilization is deemed an immensely promising method. The bio-ceramic material Zirconia (ZrO2) has garnered significant attention in the biomimetic scaffolds realm due to its remarkable biocompatibility, superior mechanical strength, and exceptional chemical stability. Numerous examinations have been conducted to investigate the properties and functions of biomimetic structures built from zirconia. Generally, nano-ZrO2 materials have showcased encouraging applications in bone tissue engineering, providing a blend of mechanical robustness, bioactivity, drug delivery capabilities, and antibacterial properties. This review aims to concentrate on the properties and preparations of ZrO2 and its composite materials, while emphasizing its role along with other materials as scaffolds for bone tissue repair applications. The study also discusses the constraints of materials and technology involved in this domain. Ongoing research and development in this area are anticipated to further augment the potential of nano-ZrO2 for advancing bone regeneration therapies.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Porosity , Bone and Bones , Zirconium/chemistry
2.
Int J Biol Macromol ; 175: 495-515, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33539959

ABSTRACT

Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.


Subject(s)
Cartilage, Articular/metabolism , Cellulose/chemistry , Tissue Scaffolds/chemistry , Animals , Cellulose/pharmacology , Chondrocytes/cytology , Chondrogenesis/physiology , Humans , Osteoarthritis/therapy , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...