Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Chin Med ; 50(6): 1663-1679, 2022.
Article in English | MEDLINE | ID: mdl-35786173

ABSTRACT

Gambogic acid (GA), a natural and bioactive compound from the gamboge resin, has been reported to exhibit many oncostatic activities against several types of malignancies. However, its effects on the progression of oral squamous cell carcinoma (OSCC) remain largely unexplored. To fill this gap, we investigated the anticancer role of GA and molecular mechanisms underlying GA's actions in combating oral cancer. We found that GA negatively regulated the viability of OSCC cells, involving induction of the sub-G1 phase and cell apoptosis. In addition, a specific signature of apoptotic proteome, such as upregulation of heme oxygenase-1 (HO-1) and activation of caspase cascades, was identified in GA-treated OSCC. Moreover, such induction of HO-1 expression and caspase cleavage by GA was significantly diminished through the pharmacological inhibition of p38 kinase. In conclusion, these results demonstrate that GA promotes cell apoptosis in OSCC, accompanied with the activation of a p38-dependent apoptotic pathway. Our findings provide potential avenues for the use of GA with high safety and therapeutic implications in restraining oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck , Xanthones
2.
Sensors (Basel) ; 21(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069061

ABSTRACT

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


Subject(s)
Ankle , Foot , Ankle Joint , Biomechanical Phenomena , Gait , Humans , Male , Muscle, Skeletal , Reproducibility of Results
3.
Small ; 14(16): e1704005, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29573555

ABSTRACT

Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...