Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Pharm Biomed Anal ; 234: 115562, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37441888

After more than two decades of research and development, adeno-associated virus (AAV) has become one of the dominant delivery vectors in gene therapy. Despite the focused research, the cell entry pathway for AAV is still not fully understood. Universal AAV receptor (AAVR) has been identified to be involved in cellular entry of different AAV serotypes. With the unveiling of the high-resolution AAV-AAVR complex structure by cryogenic electron microscopy, the atomic level interaction between AAV and AAVR has become the focus of study in recent years. However, the serotype dependence of this binding interaction and the effect of pH have not been studied. Here, orthogonal approaches including bio-layer interferometry (BLI), size-exclusion chromatography coupled to multi-angle laser scattering (SEC-MALS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were utilized to study the interaction between selected AAV serotypes and AAVR under different pH conditions. A robust BLI method was developed and the equilibrium dissociation binding constants (KD) between different AAV serotypes (AAV1, AAV5 and AAV8) and AAVR was measured. The binding constants measured by BLI together with orthogonal methods (SEC-MALS and SV-AUC) all confirmed that AAV5 has the strongest binding affinity followed by AAV1 while AAV8 binds the weakest. It was also observed that lower pH promotes the binding between AAV and AAVR and neutral or slightly basic conditions lead to very weak binding. These data indicate that for certain serotypes, AAVR may play a prominent role in trafficking AAV to the Golgi rather than acting as a host cell receptor. Information obtained from these combinatorial biophysical methods can be used to engineer future generations of AAVs to have better transduction efficiency.


Dependovirus , Dependovirus/genetics , Dependovirus/chemistry , Hydrogen-Ion Concentration , Protein Binding , Serogroup
2.
Mol Biol Evol ; 40(4)2023 04 04.
Article En | MEDLINE | ID: mdl-36911992

The sensory epithelium of the inner ear, found in all extant lineages of vertebrates, has been subjected to over 500 million years of evolution, resulting in the complex inner ear of modern vertebrates. Inner-ear adaptations are as diverse as the species in which they are found, and such unique anatomical variations have been well studied. However, the evolutionary details of the molecular machinery that is required for hearing are less well known. Two molecules that are essential for hearing in vertebrates are cadherin-23 and protocadherin-15, proteins whose interaction with one another acts as the focal point of force transmission when converting sound waves into electrical signals that the brain can interpret. This "tip-link" interaction exists in every lineage of vertebrates, but little is known about the structure or mechanical properties of these proteins in most non-mammalian lineages. Here, we use various techniques to characterize the evolution of this protein interaction. Results show how evolutionary sequence changes in this complex affect its biophysical properties both in simulations and experiments, with variations in interaction strength and dynamics among extant vertebrate lineages. Evolutionary simulations also characterize how the biophysical properties of the complex in turn constrain its evolution and provide a possible explanation for the increase in deafness-causing mutants observed in cadherin-23 relative to protocadherin-15. Together, these results suggest a general picture of tip-link evolution in which selection acted to modify the tip-link interface, although subsequent neutral evolution combined with varying degrees of purifying selection drove additional diversification in modern tetrapods.


Ear, Inner , Protocadherins , Animals , Ear, Inner/metabolism , Hearing , Cadherins/genetics , Cadherins/chemistry , Cadherins/metabolism
3.
Nucleic Acids Res ; 49(6): 3441-3460, 2021 04 06.
Article En | MEDLINE | ID: mdl-33693865

Redß is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redß forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redß in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redß forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redß in cells active for recombination and find it to range from 7 to 27 µM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.


Bacteriophage lambda , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Chromatography, Gel , DNA/metabolism , Light , Mass Spectrometry , Protein Binding , Protein Multimerization , Scattering, Radiation , Ultracentrifugation
4.
Proc Natl Acad Sci U S A ; 117(40): 24837-24848, 2020 10 06.
Article En | MEDLINE | ID: mdl-32963095

The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link-mediated inner-ear sensory perception and elucidate protocadherin-15's structural and adhesive properties relevant in disease.


Auditory Perception , Cadherins/chemistry , Cadherins/metabolism , Cadherin Related Proteins , Cadherins/genetics , Dimerization , Ear, Inner/metabolism , Hearing , Humans , Molecular Dynamics Simulation , Postural Balance , Protein Binding , Protein Conformation , Protein Domains
5.
Biophys J ; 115(12): 2368-2385, 2018 12 18.
Article En | MEDLINE | ID: mdl-30527337

The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.


Cadherins/chemistry , Extracellular Space/metabolism , Mechanical Phenomena , Protein Multimerization , Protein Precursors/chemistry , Animals , Biomechanical Phenomena , Cadherin Related Proteins , Cadherins/metabolism , Mice , Molecular Dynamics Simulation , Protein Domains , Protein Folding , Protein Precursors/metabolism , Protein Structure, Quaternary , Swine
6.
PLoS One ; 12(12): e0189546, 2017.
Article En | MEDLINE | ID: mdl-29261728

Protein-protein interactions play a crucial role in biological processes such as cell-cell adhesion, immune system-pathogen interactions, and sensory perception. Understanding the structural determinants of protein-protein complex formation and obtaining quantitative estimates of their dissociation constant (KD) are essential for the study of these interactions and for the discovery of new therapeutics. At the same time, it is equally important to characterize protein-protein interactions in a high-throughput fashion. Here, we use a modified thermal scanning assay to test interactions of wild type (WT) and mutant variants of N-terminal fragments (EC1+2) of cadherin-23 and protocadherin-15, two proteins essential for inner-ear mechanotransduction. An environmentally sensitive fluorescent dye (SYPRO orange) is used to monitor melting temperature (Tm) shifts of protocadherin-15 EC1+2 (pcdh15) in the presence of increasing concentrations of cadherin-23 EC1+2 (cdh23). These Tm shifts are absent when we use proteins containing deafness-related missense mutations known to disrupt cdh23 binding to pcdh15, and are increased for some rationally designed mutants expected to enhance binding. In addition, surface plasmon resonance binding experiments were used to test if the Tm shifts correlated with changes in binding affinity. We used this approach to find a double mutation (cdh23(T15E)- pcdh15(G16D)) that enhances binding affinity of the cadherin complex by 1.98 kJ/mol, roughly two-fold that of the WT complex. We suggest that the thermal scanning methodology can be used in high-throughput format to quickly compare binding affinities (KD from nM up to 100 µM) for some heterodimeric protein complexes and to screen small molecule libraries to find protein-protein interaction inhibitors and enhancers.


Cadherins/metabolism , Protein Interaction Mapping/methods , Protein Precursors/metabolism , Animals , Cadherin Related Proteins , Cadherins/chemistry , Ear, Inner/metabolism , Kinetics , Mice , Models, Molecular , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , Protein Denaturation , Protein Precursors/chemistry , Solutions , Surface Plasmon Resonance , Temperature
7.
PLoS One ; 8(11): e77781, 2013.
Article En | MEDLINE | ID: mdl-24223728

Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme. Three internal hydrophobic cavities were located by xenon trapping experiments on FGAR-AT crystals and further, these cavities were perturbed via site-directed mutagenesis. Biophysical characterization of the mutants demonstrated that two of these three voids are crucial for stability and function of the protein, although being ∼20 Šfrom the active centers. Interestingly, correlation analysis corroborated the experimental findings, and revealed that amino acids lining the functionally important cavities form correlated sets (co-evolving residues) that connect these regions to the amidotransferase active center. It was further proposed that the first cavity is transient and allows for breathing motion to occur and thereby serves as an allosteric hotspot. In contrast, the third cavity which lacks correlated residues was found to be highly plastic and accommodated steric congestion by local adjustment of the structure without affecting either stability or activity.


Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/chemistry , Salmonella typhimurium/enzymology , Allosteric Regulation , Allosteric Site , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Xenon/chemistry
8.
J Phys Chem A ; 116(46): 11355-60, 2012 Nov 26.
Article En | MEDLINE | ID: mdl-22770361

If the Born-Oppenheimer approximation is invoked for the description of chemical reactions, the electron density rearranges following the motion of the nuclei. Even though this approach is central to theoretical chemistry, the explicit time dependence of the electron density is rarely studied, especially if the nuclei are treated quantum mechanically. In this article, we model the motion of benzene along the Kekulé vibrational coordinate to simulate the nuclear dynamics and electron density dynamics in the electronic ground state. Details of the change of core, valence, and π electrons are determined and analyzed. We show how the pictures anticipated by drawing Lewis structures of the rearrangement correlate with the time-dependent quantum description of the process.


Benzene/chemistry , Electrons , Quantum Theory
...