Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 206: 116664, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986397

ABSTRACT

Taiwan has pledged to achieve net-zero carbon emissions by 2050, but the current extent of carbon sinks in Taiwan remains unclear. Therefore, this study aims to first review the existing nature-based carbon sinks on land and in the oceans around Taiwan. Subsequently, we suggest potential strategies to reduce CO2 emissions and propose carbon dioxide removal methods (CDRs). The natural carbon sinks by forests, sediments, and oceans in and around Taiwan are approximately 21.5, 42.1, and 96.8 Mt-CO2 y-1, respectively, which is significantly less than Taiwan's CO2 emissions (280 Mt-CO2 y-1). Taiwan must consider decarbonization strategies like using electric vehicles, renewable energy, and hydrogen energy by formulating enabling policies. Besides more precisely assessing both terrestrial and marine carbon sinks, Taiwan should develop novel CDRs such as bioenergy with carbon capture and storage, afforestation, reforestation, biochar, seaweed cultivation, and ocean alkalinity enhancement, to reach carbon neutrality by 2050.

2.
Environ Res ; 250: 118444, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38360168

ABSTRACT

Anthropogenic shifts in seas are reshaping fishing trends, with significant implications for aquatic food sources throughout this century. Examining a 21-year abundance dataset of Argentine shortfin squids Illex argentinus paired with a regional oceanic analysis, we noted strong correlations between squid annual abundance and sea surface temperature (SST) in January and February and eddy kinetic energy (EKE) from March to May in the Southwest Atlantic. A deeper analysis revealed combined ocean-atmosphere interactions, pinpointed as the primary mode in a rotated empirical orthogonal function analysis of SST. This pattern produced colder SST and amplified EKE in the surrounding seas, factors crucial for the unique life stages of squids. Future projections from the CMIP6 archive indicated that this ocean-atmosphere pattern, referred to as the Atlantic symmetric pattern, would persist in its cold SST phase, promoting increased squid abundance. However, rising SSTs due to global warming might counteract the abundance gains. Our findings uncover a previously unrecognized link between squids and specific environmental conditions governed by broader ocean-atmosphere interactions in the Southwest Atlantic. Integrating these insights with seasonal and decadal projections can offer invaluable information to stakeholders in squid fisheries and marine conservation under a changing climate.


Subject(s)
Atmosphere , Decapodiformes , Decapodiformes/physiology , Animals , Atlantic Ocean , Temperature , Seasons , Climate Change
3.
Mar Pollut Bull ; 172: 112808, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34388451

ABSTRACT

Microplastics (MPs) are ubiquitous in oceans. Their transboundary transport and fate have aroused global attention. Taiwan is located close to the western boundary current-Kuroshio, is an excellent location to study of MP mobility in the global current and Pacific Garbage Patch. This study is the first investigation to understand the microplastic contamination from Taiwan to the Kuroshio. MP concentrations in the area varied from N.D. to 0.15 items m-3, with an average concentration of 0.05 ± 0.03 items m-3. The majority of MPs were polypropylene, polyethylene, polyethylene and terephthalate. We found two MP hotspots near the coastal zone. One additional hotspot was also identified in the "pristine" Kuroshio suggesting rivers and local currents may play critical roles in transporting or injecting MPs from Taiwan into the North Pacific Gyre. These findings suggest that marine environments are altered by anthropogenic disposal and provide needed data for modelling and prediction of MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Rivers , Water Pollutants, Chemical/analysis
4.
Sci Rep ; 9(1): 15550, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664110

ABSTRACT

In summer 2010, a massive bloom appeared in the middle (16-25°N, 160-200°E) of the North Pacific Subtropical Gyre (NPSG) creating a spectacular oasis in the middle of the largest oceanic desert on Earth. Peaked in June 2010 covering over two million km2 in space, this phytoplankton bloom is the largest ever recorded by ocean color satellites in the NPSG over the period from 1997 to 2013. The initiation and mechanisms sustaining the massive bloom were due to atmospheric and oceanic anomalies. Over the north (25-30°N) of the bloom, strong anticyclonic winds warmed sea surface temperature (SST) via Ekman convergence. Subsequently, anomalous westward ocean currents were generated by SST meridional gradients between 19°N and 25°N, producing strong velocity shear that caused large number of mesoscale (100-km in order) cyclonic eddies in the bloom region. The ratio of cyclonic to anticyclonic eddies of 2.7 in summer 2010 is the highest over the 16-year study period. As a result of the large eddy-number differences, eddy-eddy interactions were strong and induced submesoscale (smaller than 100 km) vertical pumping as observed in the in-situ ocean profiles. The signature of vertical pumping was also presented in the in-situ measurements of chlorophyll and nutrients, which show higher concentrations in 2010 than other years.

5.
Sci Rep ; 8(1): 2042, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391497

ABSTRACT

To understand the biogeochemical response to internal waves in the deep basin of the northern South China Sea (NSCS), particulate organic carbon (POC) export fluxes were quantified for the first time during the passage of large internal waves using drifting sediment traps attached with hydrographic sensors. Results revealed large variations in temperature, nitrate and chlorophyll a (Chl a) concentrations during and after internal waves, suggesting that cold nutrient-replete waters may be brought to the euphotic zone in the dissipation zone during and after the passage of internal wave packets, resulted in phytoplankton flourished. Most importantly, POC export fluxes (110.9 ± 10.7 mg C m-2 d-1) were significantly enhanced after internal waves compared to non-internal wave area (32.6-73.0 mg C m-2 d-1) in the NSCS. Such elevated POC fluxes may be induced by downward flourished biogenic particles, particle aggregation or converged particles from mixed layer triggered by internal waves.

6.
Sci Rep ; 7(1): 6199, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740218

ABSTRACT

The North Pacific Subtropical Gyre (NPSG) is the largest ecosystem on Earth, and it plays a critical role in global ocean productivity and carbon cycling. Here, we report a rare and striking ~2000-km-long phytoplankton bloom that lasted over one month in the western part of the NPSG in summer 2003. The bloom resulted from the co-occurrence of a northward-shifted North Equatorial Current (NEC) supplying additional phosphate, and strong eddy activity that fueled productivity and spread chlorophyll mainly through horizontal stirring. The extensive one-month bloom had a maximum Chl concentration of six times the summer mean value and collectively fixed an additional five teragrams (5 × 1012 g) of carbon above the summer average. An increase in the pCO2 during the bloom suggests that most of the additionally fixed carbon was rapidly consumed.

7.
Sci Rep ; 7: 46692, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436491

ABSTRACT

In this paper, we report the triggering effect of extratropical perturbation on the onset of an atypical Madden-Julian Oscillation (MJO) and onset of the 2015-16 El Niño in March 2015. The MJO exhibited several unique characteristics: the effect of extratropical forcing, atypical genesis location and timing in the equatorial western Pacific, and the extremity of amplitudes in many aspects. The southward-penetrating northerly associated with the extratropical disturbances in the extratropical western North Pacific contributed to triggering the deep convection and westerly wind burst (WWB) and onset of the MJO over the anomalously warm tropical western Pacific in early March. The persisting strong WWB forced downwelling Kelvin wave-like oceanic perturbation that propagated eastward and led to the onset of the 2015-16 El Niño. The proposed novel extratropical forcing mechanism explaining the unique extratropics-MJO-El Niño association, based on both data diagnostics and numerical experiments, warrants further attention for a more detailed understanding of the onset of the MJO and its potential effect on El Niño.

SELECTION OF CITATIONS
SEARCH DETAIL