Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
In Vivo ; 38(4): 1767-1774, 2024.
Article in English | MEDLINE | ID: mdl-38936924

ABSTRACT

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Subject(s)
Autophagy , Biological Products , Hair Follicle , Plant Extracts , Stem Cells , Autophagy/drug effects , Humans , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Biological Products/pharmacology , Plant Extracts/pharmacology , Hair Follicle/drug effects , Hair Follicle/cytology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Cell Differentiation/drug effects
2.
ScientificWorldJournal ; 2021: 3752169, 2021.
Article in English | MEDLINE | ID: mdl-34646091

ABSTRACT

Background/Aim. Grammatophyllum speciosum Blume exhibits various promising pharmacological activities. However, its effect on breast cancer has not been determined. Materials and Methods. The antiproliferation effects of the G. speciosum pseudobulb ethanolic extract (GSE) and isovitexin (bioactive constituent) were investigated on the MCF-7 human breast cancer cell line using MTT and colony formation assay. The expression levels of proliferation-regulatory proteins were determined by western blotting. Results. Noncytotoxic concentrations of GSE significantly suppressed the proliferation of MCF-7 cells. Tumor colony formation decreased in both number and size. The level of phosphorylated AKT and ß-catenin was suppressed by GSE treatment. Antiproliferation was observed in isovitexin-treated MCF-7 cells in the form of inhibited colony formation and reduced expression of phosphorylated AKT and ß-catenin protein. Conclusions. This study demonstrates the novel effect of G. speciosum as an antiproliferative via suppression of the AKT/ß-catenin-dependent pathway. This may prompt further investigation of this plant in breast cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Cell Proliferation/drug effects , Ethanol/pharmacology , Orchidaceae , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Phytochemicals/isolation & purification , Phytochemicals/therapeutic use , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use
3.
In Vivo ; 33(6): 1833-1841, 2019.
Article in English | MEDLINE | ID: mdl-31662510

ABSTRACT

Background/Aim: Fine airborne particles of Particular Matter of less than 2.5 micrometers (PM 2.5 ) have been recognized as a dominant air contamination causing critical health concerns. Herein, we determined whether isovitexin, a natural plant-derived compound could protect PM2.5-mediated oxidative stress and induce stemness in epidermal cells. Materials and Methods: Cell viability was detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) were determined by flow cytometry with 2',7'-dichlorofluorescin diacetate (DCFH-DA). Protein hallmarks of stem cells were examined by western blot analysis. Results: PM2.5 treatment for 30 min increased the levels of intracellular ROS. Pre-treatment of cells with 10-50 µM of isovitexin dramatically inhibited the ROS induced by PM2.5. Antioxidant efficacy of isovitexin was also determined by the ROS scavenging activity against 2,2-diphenyl-2-picrylhydrazyl (DPPH), ABTS and superoxide anion radicals. In addition, we found that isovitexin enhanced the stem cell properties of keratinocytes, indicated by the significant increase in the levels of stem cell proteins. Conclusion: Isovitexin can be potentially used as an effective compound for preventing skin damage.


Subject(s)
Apigenin/pharmacology , Keratinocytes/drug effects , Particulate Matter/adverse effects , Protective Agents/pharmacology , Stem Cells/drug effects , Antioxidants/metabolism , Cell Line , Cell Survival/drug effects , Humans , Keratinocytes/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Superoxides/metabolism
4.
Int J Cell Biol ; 2018: 7836869, 2018.
Article in English | MEDLINE | ID: mdl-30420887

ABSTRACT

Grammatophyllum speciosum is a plant in Orchidaceae family which contains a variety of phytochemical compounds that might be beneficial for medicinal use. This study aimed to evaluate the activity of pseudobulb of G. speciosum extract (GSE) in wound healing processes in human primary fibroblast cells along with in vitro antioxidant activity and total phenolic content of GSE. Scratch wound healing assay indicated that GSE was capable of increasing migration rate after 6 and 9 hours of treatment. Besides, the extract was able to scavenge DPPH, ABTS, and superoxide anion radicals indicating the antioxidative property of GSE. This study suggested a novel role of the of pseudobulb extract of G. speciosum as a wound healing enhancer. The results from this study might be beneficial for the development of further novel active compounds for skin wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL