Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(7): 3647-3655, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36763009

ABSTRACT

Accelerator mass spectrometry (AMS) is one of the most sensitive techniques used to measure the long-lived actinides. This is particularly of interest for determination of ultra-trace transuranium nuclides and their isotopic fingerprints for nuclear forensics. In this work, a new method was developed for simultaneous determination of transuranium nuclides (Np, Pu, Am, and Cm isotopes) by using 300 kV AMS after a sequential chemical separation of each group of actinides. 242Pu and 243Am were utilized as tracers for Np/Pu and Am/Cm yield monitoring. The results show that the chemical behaviors of Np and Pu on the TK200 column and those of Am and Cm on the DGA column were very consistent in 8-9 mol/L of HNO3 and 0.015-0.03 mol/L of NaNO2 media during the radiochemical separation. The AMS detection efficiencies for transuranium nuclides were also evaluated. The detection limits for all radionuclides are below femtogram level and even in attogram level for Pu and Cm isotopes. The established method has been successfully applied to accurately measure various transuranium nuclides in a single actinide radionuclide solution, demonstrating its feasibility for nuclear forensic investigation.

2.
ACS ES T Water ; 2(10): 1688-1696, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277120

ABSTRACT

Actinides accumulate within aquatic biota in concentrations several orders of magnitude higher than in the seawater [the concentration factor (CF)], presenting an elevated radiological and biotoxicological risk to human consumers. CFs currently vary widely for the same radionuclide and species, which limits the accuracy of the modeled radiation dose to the public through seafood consumption. We propose that CFs will show less dispersion if calculated using a time-integrated measure of the labile (bioavailable) fraction instead of a specific spot sample of bulk water. Herein, we assess recently developed configurations of the diffusive gradients in thin films (DGT) sampling technique to provide a more accurate predictor for the bioaccumulation of uranium, plutonium, and americium within the biota of the Sellafield-impacted Esk Estuary (UK). We complement DGT data with the cross-flow ultrafiltration of bulk seawater to assess the DGT-labile fraction versus the bulk concentration. Sequential elution of Fucus vesiculosis reveals preferential internalization and strong intracellular binding of less particle-reactive uranium. We find significant variations between CF values in biota calculated using a spot sample versus using DGT, which suggest an underestimation of the CF by spot sampling in some cases. We therefore recommend a revision of CF values using time-integrated bioavailability proxies.

3.
Water Res ; 221: 118838, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35841796

ABSTRACT

Nuclear discharges to the oceans have given rise to significant accumulations of radionuclides in sediments which can later remobilise back into the water column. A continuing supply of radionuclides to aquatic organisms and the human food chain can therefore exist, despite the absence of ongoing nuclear discharges. Radionuclide remobilisation from sediment is consequently a critical component of the modelled radiation dose to the public. However, radionuclide remobilisation fluxes from contaminated marine sediments have never been quantitatively determined in-situ to provide a valid assessment of the issue. Here, we combine recent advances in the Diffusive Gradients in Thin Films (DGT) sampling technique with ultrasensitive measurement by accelerator mass spectrometry (AMS) to calculate the remobilisation fluxes of plutonium, americium and uranium isotopes from the Esk Estuary sediments (UK), which have accumulated historic discharges from the Sellafield nuclear reprocessing facility. Isotopic evidence indicates the local biota are accumulating remobilised plutonium and demonstrates the DGT technique as a valid bioavailability proxy, which more accurately reflects the elemental fractionation of the actinides in the biota than traditional bulk water sampling. These results provide a fundamental evaluation of the re-incorporation of bioavailable actinides into the biosphere from sediment reservoirs. We therefore anticipate this work will provide a tool and point of reference to improve radiation dose modelling and contribute insight for other environmental projects, such as the near-surface and deep disposal of nuclear waste.


Subject(s)
Actinoid Series Elements , Plutonium , Actinoid Series Elements/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Humans , Plutonium/analysis , Radioisotopes/analysis , Water/analysis
4.
ACS Omega ; 7(23): 20053-20058, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722008

ABSTRACT

Spent nuclear fuel must be carefully managed to prevent pollution of the environment with radionuclides. Within the framework of correct radioactive waste management, spent fuel rods are stored in cooling pools to allow short-lived fission products to decay. If fuel rods leak, they liberate radionuclides into the cooling water; therefore, it is essential to determine radionuclide concentrations in the pool water for monitoring purposes and to plan the decommissioning process. In this work, we present, to our knowledge, the first passive sampling technique for measures of actinides in spent nuclear fuel pools, based on recently developed diffusive gradients in thin-film (DGT) configurations. These samplers eliminate the need to retrieve and handle large samples of fuel pool water for radiochemical processing by immobilizing their targeted radionuclides in situ on the solid phase within the sampler. This is additionally the first application of the DGT technique for Cm measure. Herein, we make the calibrated effective diffusion coefficients of U, Pu, Am, and Cm in borated spent fuel pool water available. We tested these samplers in the fuel pool of a nuclear facility and measured samples using accelerator mass spectrometry to provide high-precision isotopic reports, allowing for the first independent implementation of a recently developed technique for dating nuclear fuel based on its Cm isotope signature.

5.
Nat Commun ; 13(1): 1196, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256613

ABSTRACT

The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure.


Subject(s)
Protons , Solar Activity , Earth, Planet , Germany , Trees
6.
Nat Commun ; 13(1): 214, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017519

ABSTRACT

During solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth's atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.

7.
Anal Chem ; 93(24): 8442-8449, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34106681

ABSTRACT

A new analytical method has been developed to determine atomic 236U/238U ratios in samples with only femtograms of 236U using a secondary electron multiplier (SEM) on a multicollector high-resolution inductively coupled plasma mass spectrometer (MC-ICPMS). The abundance sensitivity of the 238U tail at 236 atomic mass unit is reduced from 10-6 to 10-10 with the deployment of a retarding potential quadrupole lens. This method features the reduction of polyatomic interferences from hydride, nitride, lead, and plutonium and the evaluation of nonlinear SEM behavior. The instrument sensitivity is 1-2%, and the estimated methodological detection limit of the 236U/238U atomic ratio is as low as 2 × 10-10. Measurements on reference materials with 236U/238U ratios of 10-7-10-9, including the IRMM-075 series and the ETH Zurich in-house standard ZUTRI, demonstrate the accuracy of our MC-ICPMS technique. The analytical precisions (2σ) are ±4% for 5 fg of 236U at a 236U/238U of 1 × 10-8 and ±8% for 2 fg of 236U at a 236U/238U of 4 × 10-9 level. Compared to state-of-the-art accelerator mass spectrometry techniques and triple quadrupole-based ICPMS, our detection limit is not as low, but the required sample size is 3-40 times lower, and the throughput is as high as 3-4 samples per hour. The new MC-ICPMS-SEM technique is sensitive enough for determining 236U/238U in various small natural samples, such as marine carbonates and seawater.


Subject(s)
Plutonium , Carbonates , Mass Spectrometry , Seawater , Spectrum Analysis
8.
Nat Commun ; 12(1): 2546, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953195

ABSTRACT

Soil sustainability is reflected in a long-term balance between soil production and erosion for a given climate and geology. Here we evaluate soil sustainability in the Andean Altiplano where accelerated erosion has been linked to wetter climate from 4.5 ka and the rise of Neolithic agropastoralism in the millennium that followed. We measure in situ cosmogenic 14C directly on cultivated hilltops to quantify late Holocene soil loss, which we compare with background soil production rates determined from cosmogenic 26Al and 10Be. Our Monte Carlo-based inversion method identifies two scenarios to account for our data: an increase in erosion rate by 1-2 orders of magnitude between ~2.6 and 1.1 ka, or a discrete event stripping ~1-2 m of soil between ~1.9 and 1.1 ka. Coupled environmental and cultural factors in the Late Holocene signaled the onset of the pervasive human imprint in the Andean Altiplano seen today.

9.
Nat Commun ; 12(1): 1381, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741911

ABSTRACT

Trace-level plutonium in the environment often comprises local and global contributions, and is usually anthropogenic in origin. Here, we report estimates of local and global contributions to trace-level plutonium in soil from a former, fast-breeder reactor site. The measured 240Pu/239Pu ratio is anomalously low, as per the reduced 240Pu yield expected in plutonium bred with fast neutrons. Anomalies in plutonium concentration and isotopic ratio suggest forensic insight into specific activities on site, such as clean-up or structural change. Local and global 239Pu contributions on-site are estimated at (34 ± 1)% and (66 ± 3)%, respectively, with mass concentrations of (183 ± 6) fg g-1 and (362 ± 13) fg g-1. The latter is consistent with levels at undisturbed and distant sites, (384 ± 44) fg g-1, where no local contribution is expected. The 240Pu/239Pu ratio for site-derived material is estimated at 0.05 ± 0.04. Our study demonstrates the multi-faceted potential of trace plutonium assay to inform clean-up strategies of fast breeder legacies.

10.
Sci Total Environ ; 765: 142741, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33071133

ABSTRACT

The aim of this study was to assess the potential of combining the conservatively behaving anthropogenic radionuclides 236U and 237Np to gain information on the origin of water masses tagged with liquid effluents from Nuclear Reprocessing Plants. This work includes samples collected from three full-depth water columns in two areas: i) the Arctic Ocean, where Atlantic waters carry the signal of Sellafield (United Kingdom) and La Hague (France) nuclear reprocessing facilities; and ii) the western Mediterranean Sea, directly impacted by Marcoule reprocessing plant (France). This work is complemented by the study of the particle-reactive Pu isotopes as an additional fingerprint of the source region. In the Canada Basin, Atlantic waters showed the highest concentrations and 237Np/236U ratios in agreement with the estimated values for North Atlantic waters entering the Arctic Ocean and tagged with the signal of European Nuclear Reprocessing Plants. These results may reflect the impact of the documented releases for the 1990s. In the Mediterranean Sea, an excess of 236U presumably caused by Marcoule is reflected in the lower 237Np/236U ratios compared to the Global Fallout signal in all the studied samples. On the contrary, the 239,240Pu profiles were mainly governed by the Global Fallout. The impact of Marcoule as a local source is further corroborated when comparing the temporal evolution of these ratios between 2001 and 2013. The lowest 237Np/236U ratios observed in 2001 at the surface reflect a previous local input that is no longer observed in 2013 as it had been homogenized through the whole water column. This work presents the use of 237Np as a new ocean tracer. A more accurate characterization of the main sources is still needed to optimize the use of 236U-237Np as a new tool to understand transient oceanographic processes.

11.
Proc Natl Acad Sci U S A ; 117(46): 28649-28654, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139546

ABSTRACT

Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.

12.
Sci Total Environ ; 738: 139700, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32534284

ABSTRACT

Radiocarbon (14C) is broadly used in oceanography to determine water ages, trace water circulation, and develop sediment- and sclerochronologies. These applications require an accurate knowledge of marine 14C levels, which have been largely perturbed by human activities. Globally during the last century the above-ground nuclear weapon testings have been the primary cause of the increased atmospheric and marine 14C. However, other anthropogenic sources may have caused important regional deviations from the bomb pulse. For the last 70 years European nuclear fuel reprocessing plants have been major contributors of 14C to air and oceans, yet, their regional impact on surrounding marine 14C has been largely overlooked. Here we use a collection of bivalve shells of known capture date and age collected from various locations, including the North Sea, the Irish Sea, Norway, and the Bay of Biscay to reconstruct the sea surface 14C over the last five decades. The measured 14C values for the period 1969-2019, reported in fraction modern, ranged from 1.1 to 1.6 in coastal waters of the Netherlands and from 1.2 to 3.2 along the coast of the UK, indicating significantly higher levels of 14C than those expected for the marine bomb pulse (0.950-1.150). The 14C peaks revealed by the shells coincide with the increase of liquid 14C releases reported from the reprocessing plants of La Hague into the English Channel, and from Sellafield into the Irish Sea. Conversely, the shells from Norway and Spain showed 14C values close to the range of the global marine bomb pulse. The observed large spatial and temporal differences in sea surface 14C show that 14C dating and tracing studies could become problematic in the English Channel, Irish Sea and North Sea for the time period covering the discharge of liquid 14C from the reprocessing plants.

13.
Sci Total Environ ; 717: 137094, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32062259

ABSTRACT

Marine biogenic materials such as corals, shells, or seaweed have long been recognized as recorders of environmental conditions. Here, the bivalve Cerastoderma edule is used for the first time as a recorder of past seawater contamination with anthropogenic uranium, specifically 236U. Several studies have employed the authorized radioactive releases, including 236U, from nuclear reprocessing plants in La Hague, France, into the English Channel, and Sellafield, England, into the Irish Sea, to trace Atlantic waters and to understand recent climate induced circulation changes in the Arctic Ocean. Anthropogenic 236U has emerged over recent years as a new transient tracer to track these changes, but its application has been challenged owing to paucity of fundamental data on the input (timing and amount) of 236U from Sellafield. Here, we present 236U/238U data from bivalve shells collected close to La Hague and Sellafield from two unique shell collections that allow the reconstruction of the historical 236U contamination of seawater since the 1960s, mostly with bi-annual resolution. The novel archive is first validated by comparison with well-documented 236U discharges from La Hague. Then, shells from the Irish Sea are used to reconstruct the regional 236U contamination. Apart from defining new, observationally based 236U input functions that will allow more precise tracer studies in the Arctic Ocean, we find an unexpected peak of 236U releases to the Irish Sea in the 1970s. Using this peak, we provide evidence for a small, but significant recirculation of Irish Sea water into the English Channel. Tracing the 1970s peak should allow extending 236U tracer studies into the South Atlantic Ocean.


Subject(s)
Nuclear Power Plants , Seawater , Uranium , Water Pollutants, Radioactive
14.
Proc Natl Acad Sci U S A ; 116(13): 5961-5966, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30858311

ABSTRACT

Recently, it has been confirmed that extreme solar proton events can lead to significantly increased atmospheric production rates of cosmogenic radionuclides. Evidence of such events is recorded in annually resolved natural archives, such as tree rings [carbon-14 (14C)] and ice cores [beryllium-10 (10Be), chlorine-36 (36Cl)]. Here, we show evidence for an extreme solar event around 2,610 years B.P. (∼660 BC) based on high-resolution 10Be data from two Greenland ice cores. Our conclusions are supported by modeled 14C production rates for the same period. Using existing 36Cl ice core data in conjunction with 10Be, we further show that this solar event was characterized by a very hard energy spectrum. These results indicate that the 2,610-years B.P. event was an order of magnitude stronger than any solar event recorded during the instrumental period and comparable with the solar proton event of AD 774/775, the largest solar event known to date. The results illustrate the importance of multiple ice core radionuclide measurements for the reliable identification of short-term production rate increases and the assessment of their origins.

15.
Nat Commun ; 9(1): 5399, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559446

ABSTRACT

The original version of this Article contained an error in the Data Availability section, which incorrectly read 'All data will be freely available via https://www.ams.ethz.ch/research.html .' The correct version states ' http://www.ams.ethz.ch/research/published-data.html ' in place of ' https://www.ams.ethz.ch/research.html '. This has been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 3605, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190505

ABSTRACT

Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.

17.
Sci Rep ; 8(1): 2299, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396427

ABSTRACT

Terrestrial cosmogenic nuclide concentrations of detrital minerals yield catchment-wide rates at which hillslopes erode. These estimates are commonly used to infer millennial scale denudation patterns and to identify the main controls on mass-balance and landscape evolution at orogenic scale. The same approach can be applied to minerals preserved in stratigraphic records of rivers, although extracting reliable paleo-denudation rates from Ma-old archives can be limited by the target nuclide's half-life and by exposure to cosmic radiations after deposition. Slowly eroding landscapes, however, are characterized by the highest cosmogenic radionuclide concentrations; a condition that potentially allows pushing the method's limits further back in time, provided that independent constraints on the geological evolution are available. Here, we report 13-10 million-year-old paleo-denudation rates from northernmost Chile, the oldest 10Be-inferred rates ever reported. We find that at 13-10 Ma the western Andean Altiplano has been eroding at 1-10 m/Ma, consistent with modern paces in the same setting, and it experienced a period with rates above 10 m/Ma at ~11 Ma. We suggest that the background tectono-geomorphic state of the western margin of the Altiplano has remained stable since the mid-Miocene, whereas intensified runoff since ~11 Ma might explain the transient increase in denudation.

18.
Environ Sci Technol ; 51(21): 12146-12153, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28990772

ABSTRACT

In this study we present new seawater data of 236U and 238U sampled in the North Sea in 2010. The North Sea has been and is still receiving a considerable input of anthropogenic radionuclides from nuclear reprocessing facilities located in La Hague (France) and Sellafield (Great Britain). It therefore represents an important source region for oceanographic tracer studies using the transient signal of anthropogenic 236U. A proper knowledge of the sources of 236U is an essential prerequisite for such tracer studies. The 236U data set presented in this study covers the transition regions of the North Sea to the Atlantic Ocean, to the Baltic Sea, and upstream the Elbe River. It is discussed in the context of available 236U data from the literature. Our results show that both 236U concentrations and 236U/238U ratios in surface waters of the North Sea can be explained by simple binary mixing models implying that 236U behaves conservatively in seawater. We further show that the input of 236U by the Elbe River is negligible, while there might be a maximum input of 12 g/yr via the Baltic Sea. The results of the mixing models suggest that this still unidentified 236U contamination could be supplied by fresh water input.


Subject(s)
Seawater , Water Pollutants, Radioactive , Atlantic Ocean , Baltic States , France , Iodine Radioisotopes , North Sea , United Kingdom , Uranium
19.
Sci Rep ; 7(1): 11848, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928452

ABSTRACT

Concentrations of 239Pu, 240Pu, and 241Am, and atomic ratio of 240Pu/239Pu in freshly fallen snow on Mt. Zugspitze collected in 2014, 2015 and 2016 were determined by accelerator mass spectrometry (AMS). For the sub-femtogram (10-15 g) - level of Pu and Am analysis, a chemical separation procedure combined with AMS was improved and an excellent overall efficiency of about 10-4 was achieved. The concentration of 239Pu ranges from 75 ± 13 ag/kg to 2823 ± 84 ag/kg, of 240Pu from 20.6 ± 5.2 to 601 ± 21 ag/kg, and of 241Am was found in the range of 16.7 ± 5.0-218.8 ± 8.9 ag/kg. Atomic ratios of 240Pu/239Pu for most samples are comparable to the fallout in middle Europe. One exceptional sample shows a higher Pu concentration. High airborne dust concentration, wind directions, high Cs concentrations and the activity ratio of 239+240Pu/137Cs lead to the conclusion that the sample was influenced by Pu in Saharan dust transported to Mt. Zugspitze.

20.
Environ Sci Technol ; 51(17): 9826-9835, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28726397

ABSTRACT

After the Fukushima Dai-ichi nuclear accident, many efforts were put into the determination of the presence of 137Cs, 134Cs, 131I, and other gamma-emitting radionuclides in the ocean, but minor work was done regarding the monitoring of less volatile radionuclides, pure beta-ray emitters or simply radionuclides with very long half-lives. In this study we document the temporal evolution of 129I, 236U, and Pu isotopes (239Pu and 240Pu) in seawater sampled during four different cruises performed 2, 3, and 4 years after the accident, and we compare the results to 137Cs collected at the same stations and depths. Our results show that concentrations of 129I are systematically above the nuclear weapon test levels at stations located close to the FDNPP, with a maximum value of 790 × 107 at·kg-1, that exceeds all previously reported 129I concentrations in the Pacific Ocean. Yet, the total amount of 129I released after the accident in the time 2011-2015 was calculated from the 129I/137Cs ratio of the ongoing 137Cs releases and estimated to be about 100 g (which adds to the 1 kg released during the accident in 2011). No clear evidence of Fukushima-derived 236U and Pu isotopes has been found in this study, although further monitoring is encouraged to elucidate the origin of the highest 240Pu/239Pu atom ratio of 0.293 ± 0.028 we found close to FDNPP.


Subject(s)
Fukushima Nuclear Accident , Water Pollutants, Radioactive , Cesium Radioisotopes , Japan , Nuclear Power Plants , Oceans and Seas , Pacific Ocean , Radiation Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...