Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Pharmacol Ther ; 254: 108593, 2024 Feb.
Article En | MEDLINE | ID: mdl-38301771

Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.


Berberine , Carcinoma, Hepatocellular , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Child , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/prevention & control , Berberine/pharmacology , Berberine/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/prevention & control
2.
Int Immunopharmacol ; 129: 111598, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38309092

BACKGROUND AND PURPOSE: Wuling capsule (WL) has good efficacy in the clinical treatment of chronic hepatitis B and liver injury. Liver fibrosis is a common pathological feature of chronic liver disease and may progress to irreversible cirrhosis and liver cancer. Accumulating evidence reveals that modulating macrophage polarization contribute to the therapy of liver fibrosis. However, the effects of WL on modulating macrophage polarization to relive liver fibrosis remain unclear. This study investigated the anti-liver fibrosis effects of WL in carbon tetrachloride (CCl4)-induced liver fibrosis in rats, and the modulation effects and underlying molecular mechanism on macrophage polarization. METHODS: A rat liver fibrosis model was constructed by intraperitoneal injection of 40 % CCl4 olive oil mixture. At 2, 4, 6, and 8 weeks, the histopathological status of the liver was assessed by hematoxylin-eosin (HE) and Masson staining; the liver biochemical indexes were measured in rat liver tissue. The expression levels of inflammatory cytokines in liver tissue were detected by ELISA. The mRNA levels and proteins expression of macrophage markers of different phenotypes, TLR4-NF-κB signaling pathway indicators were detected independently by ELISA, immunofluorescence, RT-PCR and western blotting. RESULTS: In vivo, WL treatment attenuated abnormal changes in weight, organ indices and biochemical indices, alleviated pathological changes, and reduced collagen fiber deposition as well as the expression of α-SMA in liver tissues. Further studies revealed that WL decreased the expression of the macrophage M1 polarization markers inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and CD86, promoted the expression of the M2 macrophage polarization markers IL-10, CD206, and arginase-1 (Arg-1), and inhibited the activation of the TLR4-NF-κB signaling pathway via several key signaling proteins. In vitro, WL significantly suppressed macrophage M1 polarization, and promoted M2 polarization while boosted M1 polarization transform to M2 polarization in LPS-activated RAW264.7 cells. CONCLUSIONS: This study demonstrated that WL modulated macrophage polarization against liver fibrosis mainly by inhibiting the activation of the TLR4-NF-κB signaling pathway.


Drugs, Chinese Herbal , NF-kappa B , Toll-Like Receptor 4 , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism
3.
J Med Chem ; 66(5): 3250-3261, 2023 03 09.
Article En | MEDLINE | ID: mdl-36855911

Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.


Prodrugs , Thioredoxin-Disulfide Reductase , Thioredoxin-Disulfide Reductase/metabolism , Prodrugs/pharmacology , Puromycin/pharmacology
4.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119323, 2022 10.
Article En | MEDLINE | ID: mdl-35793738

Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis, while dysregulation of redox homeostasis is a hallmark for cancer cells. Thus, there is considerable potential to inhibit the aberrantly upregulated TrxR in cancer cells to discover selective cancer therapeutic agents. Nevertheless, the structural types of TrxR inhibitors presented currently are still relatively limited. We herein report that PACMA 31, previously reported to inhibit protein disulfide isomerase (PDI), is a potent TrxR inhibitor. PACMA 31 possesses a pharmacophore scaffold that is structurally different from the announced TrxR inhibitors and exhibits effective cytotoxicity against cervical cancer cells. Our results reveal that PACMA 31 selectively inhibits TrxR over the related glutathione reductase (GR) and in the presence of reduced glutathione (GSH). Further studies with mutant enzyme and molecular docking suggest that the propynamide fragment of PACMA 31 interacts covalently with the selenocysteine residue of TrxR. Moreover, PACMA 31 effectively and selectively curbs TrxR activity in cells and further stimulates the production of reactive oxygen species (ROS) at low micromolar concentrations, which in turn triggers the accumulation of oxidized thioredoxin (Trx) and GSSG in cells. Follow-up studies demonstrate that PACMA 31 targets TrxR in cells to induce oxidative stress-mediated cancer cell apoptosis. Our results provide a new structural type of TrxR inhibitor that may serve as a useful probe for investigating the biology of TrxR-implicated pathways, and uncover a new target of PACMA 31 that contributes to it becoming a candidate for cancer treatment.


Intracellular Signaling Peptides and Proteins , Neoplasms , Thioredoxin-Disulfide Reductase , Humans , Apoptosis , Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxin-Disulfide Reductase/pharmacology , Thioredoxins/metabolism
5.
Front Pharmacol ; 12: 766309, 2021.
Article En | MEDLINE | ID: mdl-35046807

Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 µg/ml) to 2 µg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.

6.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1465-1472, 2020 Apr.
Article Zh | MEDLINE | ID: mdl-32489022

In the previous research, our laboratory established a mouse model combining disease with syndrome of human coronavi-rus pneumonia with pestilence attacking the lung syndrome, based on the national traditional Chinese medicine clinical classification of Novel Coronavirus Infected Pneumonia Diagnosis and Treatment Plan. In this study, a mouse model combining disease with syndrome of human coronavirus pneumonia with pestilence attacking the lung syndrome was used to evaluate the effectiveness of Reyanning Mixture to provide animal experimental support for clinical application. Mice were divided into normal group, 229 E infection group, cold-dampness group, cold-dampness+229 E infection group(the model group), Reyanning high and low dose groups. The cold-dampness group, cold-dampness+229 E infection group, two Reyanning groups were given cold and damp stimulation for 7 days. On the 5 th day, the 229 E infection group, cold-dampness+229 E infection group, and two Reyanning groups were infected with HCoV-229 E virus. Reyanning was administered for 3 days, starting from the day of infection. Blood was collected on the 4 th day and the lung tissue was dissected to calculate the lung index and inhibition rate; flow cytometry was used to detect the percentage of T and B lymphocytes in peripheral blood; RT-PCR was used to detect the nucleic acid virus load in lung tissue; ELISA was used to detect motilin and gastrin in serum, and inflammatory factors TNF-α, IFN-γ, IL-6, IL-10 in lung tissue proteins. Reyanning Mixture could reduce the lung index(P<0.01) of coronavirus pneumonia mice with pestilence attacking the lung; it could significantly increase the percentage of CD8~+ T lymphocytes and CD4~+ T lymphocytes in peripheral blood of model mice(P<0.05, P<0.01). The low dose of Reyanning could effectively increase the percentage of total B lymphocytes(P<0.05), reduce virus load in lung tissue of model mice(P<0.01), reduce the levels of TNF-α, IFN-γ, IL-6, IL-10 in the lung tissue of model mice(P<0.01), reduce the content of motilin in the serum of model mice(P<0.01). Reyanning Mixture convey a better effect in treating coronavirus pneumonia mice with pestilence attacking the lung. It manifested obvious effects in improving lung lesions, enhancing the gastrointestinal function of mice, improving the autoimmune function of mice, and reducing the expression of inflammatory factors in vivo, which could provide evidences for clinical research.


Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , COVID-19 , Humans , Lung , Mice , SARS-CoV-2
7.
Sci Total Environ ; 718: 136679, 2020 May 20.
Article En | MEDLINE | ID: mdl-32092508

At present, the researches on the corrosion of mixed microorganisms pay more attention to iron-oxidizing bacteria (IOB) and sulfate-reducing bacteria (SRB) in tap water or seawater. Pseudomonas fluorescens and Escherichia coli are two common microorganisms in reclaimed water, but there are few studies about their interaction on metal interface and about their influence on metal corrosion behavior. The corrosion behavior of carbon steel under mixed microorganisms of Escherichia coli and Pseudomonas fluorescens was studied by corrosion weight loss, electrochemistry, scanning electron microscopy (SEM) and X-ray diffraction (XRD) in this paper. The dominant bacteria under mixed bacteria conditions determined the final result of corrosion reaction in reclaimed water. On the first three days, the dominant strain was Escherichia coli, which produced acid on the surface of carbon steel and deteriorated corrosion. After the 3rd day, the dominant strain was Pseudomonas fluorescens, which inhibited the growth of Escherichia coli and slowed down corrosion. When the extracellular polymeric substances (EPS) concentration of Pseudomonas fluorescens reached 400 mg/L, it would inhibit the growth and reproduction of Escherichia coli. On the contrary, Escherichia coli EPS acted as a nutrient for Pseudomonas fluorescens, promoting the growth and reproduction of Pseudomonas fluorescens.


Steel , Bacteria , Biofilms , Carbon , Corrosion , Water
...