Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Braz. arch. biol. technol ; Braz. arch. biol. technol;59: e160393, 2016. tab, graf
Article in English | LILACS | ID: biblio-951301

ABSTRACT

ABSTRACT Momordica charantia (Cucurbitaceae) is an important vegetable and also medicinal crop which produces the bioactive compounds for various biological activities with potential uses in human health. The present investigation relates to elicitors of jasmonic acid (JA) and salicylic acid (SA) to enhance biomass accumulation and phenolic compound production in hairy root cultures of M. charantia. Hairy root cultures were elicited with JA and SA at 0, 25, 50 and 100 μM concentrations respectively. The adding of elicitation to the hairy root cultures on the 15th day of culture and the roots were harvested on day 25. Cultures supplemented with 100 μM JA and SA enhanced the phenolic compounds significantly compared to that of non-elicited hairy root cultures. The biomass of hairy root culture significantly increased by SA whereas decreased in JA elicitation at 100 μM. JA and SA-elicited hairy root cultures significantly produced a higher amount of phenolic compounds (12811.23 and 11939.37µg/g), total phenolic (4.1 and 3.7 mg/g) and flavonoid (3.5 and 3.2 mg/g) contents than non-elicited hairy root cultures (10964.25 µg/g, 2.8 and 2.5 mg/g). JA and SA-elicited hairy root cultures were significantly higher antioxidant activity of DPPH (84 and 78%), reducing potential (0.53 and 0.48), phosphomolybdenum (3.6 and 3.2 mg/g) and ferrous ion chelating assays (80 and 74%) than non-elicited hairy root cultures. The higher antimicrobial and anticancer activity were exhibited in JA and SA-elicited than non-elicited hairy root cultures. This protocol can be developed for the production of phenolic compounds from JA and SA-elicited hairy root cultures.

2.
Electron. j. biotechnol ; Electron. j. biotechnol;18(4): 295-301, July 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-757867

ABSTRACT

Background The effect of polyamines (PAs) along with cytokinins (TDZ and BAP) and auxin (IBA) was induced by the multiple shoot regeneration from leaf explants of gherkin (Cucumis anguria L.). The polyphenolic content, antioxidant and antibacterial potential were studied from in vitro regenerated and in vivo plants. Results Murashige and Skoog (MS) medium supplemented with 3% sucrose containing a combination of 3.0 µM TDZ, 1.0 µM IBA and 75 µM spermidine induced maximum number of shoots (45 shoots per explant) was achieved. Regenerated shoots elongated in shoot elongation medium containing 1.5 µM GA3 and 50 µM spermine. The well-developed shoots were transferred to root induction medium containing 1.0 µM IBA and 50 µM putrescine. Rooted plants were hardened and successfully established in soil with a 95% survival rate. Twenty-five phenolic compounds were identified by ultra-performance liquid chromatography (UPLC) analysis The individual polyphenolic compounds, total phenolic and flavonoid contents, antioxidant and antibacterial potential were significantly higher with in vitro regenerated plants than in vivo plants. Conclusions Plant growth regulators (PGRs) and PAs had a significant effect on in vitro plant regeneration and also a biochemical accumulation of flavonols, hydroxybenzoic and hydroxycinnamic acid derivatives in C. anguria. Due to these metabolic variations, the antioxidant and antibacterial activities were increased with in vitro regenerated plants than in vivo plants. This is the first report describing the production of phenolic compounds and biological activities from in vitro and in vivo regenerated plants of C. anguria.


Subject(s)
Cucumis/growth & development , Cucumis/chemistry , Phenolic Compounds/analysis , Anti-Bacterial Agents , Antioxidants , Plant Growth Regulators , Regeneration , Biological Products , In Vitro Techniques , Plant Shoots , Phytochemicals
SELECTION OF CITATIONS
SEARCH DETAIL