Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 35(1): 32-40, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12910271

ABSTRACT

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Subject(s)
Bordetella bronchiseptica/genetics , Bordetella pertussis/genetics , Bordetella/genetics , Genome, Bacterial , Base Sequence , Bordetella/metabolism , Bordetella/pathogenicity , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/pathogenicity , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , DNA, Bacterial , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
2.
Yeast ; 19(6): 521-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11921100

ABSTRACT

Expression of the mei3 gene is sufficient to induce meiosis in the fission yeast Schizosaccharomyces pombe. The mei3 gene is located 0.64 Mb from the telomere of the left arm of Sz. pombe chromosome II. We have sequenced and analysed 107 kb of DNA from the mei3 genomic region. The sequence includes 14 known genes (bag1-B, csh3, dps1, gpt1, mei3, mfm3, pac1, prp31, rpl38-1, rpn3, rti1, spa1, spm1 and ubc4) and 26 other open reading frames (ORFs) longer than 100 codons: a density of one protein-coding gene per 2.7 kb. Twenty-one of the 40 ORFs (53%) have introns. In addition there is one lone Tf1 transposon long terminal repeat (LTR), tRNA(Trp) and tRNA(Ser) genes and a 5S rRNA gene. 14 of the novel ORFs show sequence similarities which suggest functions of their products, including a coatomer alpha-subunit, a catechol O-methyltransferase, protein kinase, asparagine synthetase, zinc metalloprotease, acetyltransferase, phosphatidylinositol 4-kinase, inositol polyphosphate phosphatase, GTPase-activating protein, permease, pre-mRNA splicing factor, 20S proteasome component and a thioredoxin-like protein. One predicted protein has similarity to the human Cockayne syndrome protein CSA and one with human GTPase XPA binding protein XAB1. Three ORFs are likely to code for proteins because they have sequence similarity with hypothetical proteins, three encode predicted coiled-coil proteins and four are sequence orphans.


Subject(s)
Fungal Proteins/genetics , Genome, Fungal , Schizosaccharomyces pombe Proteins , Schizosaccharomyces/genetics , Cosmids , Meiosis , Molecular Sequence Data , Open Reading Frames , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL