Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33760042

ABSTRACT

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Subject(s)
Drug Resistance, Neoplasm/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid/genetics , Mitochondria/genetics , Mutation , Acute Disease , Aminopyridines/pharmacology , Animals , Cell Line, Tumor , Doxycycline/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , HL-60 Cells , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mitochondria/drug effects , Mitochondria/metabolism , Oxadiazoles/pharmacology , Oxidative Phosphorylation/drug effects , Piperidines/pharmacology , Pyridines/pharmacology , Triazines/pharmacology , Xenograft Model Antitumor Assays/methods
2.
Cancers (Basel) ; 13(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406607

ABSTRACT

The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.

3.
Sci Transl Med ; 12(547)2020 06 10.
Article in English | MEDLINE | ID: mdl-32522803

ABSTRACT

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


Subject(s)
Antineoplastic Agents , Liposarcoma , Antineoplastic Agents/therapeutic use , Humans , Liposarcoma/drug therapy , Liposarcoma/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Serine/therapeutic use , Tumor Suppressor Protein p53/genetics
4.
Anal Chem ; 92(8): 5890-5896, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32212637

ABSTRACT

Studies of the topology, functioning, and regulation of metabolic systems are based on two main types of information that can be measured by mass spectrometry: the (absolute or relative) concentration of metabolites and their isotope incorporation in 13C-labeling experiments. These data are currently obtained from two independent experiments because the 13C-labeled internal standard (IS) used to determine the concentration of a given metabolite overlaps the 13C-mass fractions from which its 13C-isotopologue distribution (CID) is quantified. Here, we developed a generic method with a dedicated processing workflow to obtain these two sets of information simultaneously in a unique sample collected from a single cultivation, thereby reducing by a factor of 2 both the number of cultivations to perform and the number of samples to collect, prepare, and analyze. The proposed approach is based on an IS labeled with other isotope(s) that can be resolved from the 13C-mass fractions of interest. As proof-of-principle, we analyzed amino acids using a doubly labeled 15N13C-cell extract as IS. Extensive evaluation of the proposed approach shows a similar accuracy and precision compared to state-of-the-art approaches. We demonstrate the value of this approach by investigating the dynamic response of amino acids metabolism in mammalian cells upon activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a key component of the unfolded protein response. Integration of metabolite concentrations and isotopic profiles reveals a reduced de novo biosynthesis of amino acids upon PERK activation. The proposed approach is generic and can be applied to other (micro)organisms, analytical platforms, isotopic tracers, or classes of metabolites.


Subject(s)
Amino Acids/analysis , Amino Acids/metabolism , Animals , Carbon Isotopes , Cells, Cultured , Chromatography, High Pressure Liquid , Isotope Labeling , Mass Spectrometry , Nitrogen Isotopes , Rats
5.
JCI Insight ; 3(17)2018 09 06.
Article in English | MEDLINE | ID: mdl-30185659

ABSTRACT

Sarcomas are still unsolved therapeutic challenges. Cancer stem cells are believed to contribute to sarcoma development, but lack of specific markers prevents their characterization and targeting. Here, we show that calpain-6 expression is associated with cancer stem cell features. In mouse models of bone sarcoma, calpain-6-expressing cells have unique tumor-initiating and metastatic capacities. Calpain-6 levels are especially high in tumors that have been successfully propagated in mouse to establish patient-derived xenografts. We found that calpain-6 levels are increased by hypoxia in vitro and calpain-6 is detected within hypoxic areas in tumors. Furthermore, calpain-6 expression depends on the stem cell transcription network that involves Oct4, Nanog, and Sox2 and is activated by hypoxia. Calpain-6 knockdown blocks tumor development in mouse and induces depletion of the cancer stem cell population. Data from transcriptomic analyses reveal that calpain-6 expression in sarcomas inversely correlates with senescence markers. Calpain-6 knockdown suppresses hypoxia-dependent prevention of senescence entry and also promotion of autophagic flux. Together, our results demonstrate that calpain-6 identifies sarcoma cells with stem-like properties and is a mediator of hypoxia to prevent senescence, promote autophagy, and maintain the tumor-initiating cell population. These findings open what we believe is a novel therapeutic avenue for targeting sarcoma stem cells.


Subject(s)
Autophagy , Calpain/metabolism , Cellular Senescence/physiology , Microtubule-Associated Proteins/metabolism , Neoplastic Stem Cells/metabolism , Sarcoma/metabolism , Animals , Biomarkers , Calpain/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Hypoxia , Male , Mice , Mice, Inbred BALB C , Microtubule-Associated Proteins/genetics , Nanog Homeobox Protein/metabolism , Neoplasms , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Xenograft Model Antitumor Assays
6.
Mol Cell ; 62(6): 890-902, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27264869

ABSTRACT

The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Colonic Neoplasms/metabolism , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Serine/metabolism , Tumor Suppressor Protein p53/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Proliferation , Chromatin/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glycine/metabolism , HCT116 Cells , Homeostasis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Nude , Mutation , Oxidation-Reduction , Oxidative Stress , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , RNA Interference , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Time Factors , Transcription, Genetic , Transfection , Tumor Burden , Tumor Suppressor Protein p53/genetics , Thyroid Hormone-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...