Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Pediatrics ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38841769

BACKGROUND: The coronavirus disease 2019 pandemic disrupted respiratory syncytial virus (RSV) seasonality resulting in early, atypical RSV seasons in 2021 and 2022, with an intense 2022 peak overwhelming many pediatric healthcare facilities. METHODS: We conducted prospective surveillance for acute respiratory illness during 2016-2022 at 7 pediatric hospitals. We interviewed parents, reviewed medical records, and tested respiratory specimens for RSV and other respiratory viruses. We estimated annual RSV-associated hospitalization rates in children aged <5 years and compared hospitalization rates and characteristics of RSV-positive hospitalized children over 4 prepandemic seasons (2016-2020) to those hospitalized in 2021 or 2022. RESULTS: There was no difference in median age or age distribution between prepandemic and 2021 seasons. Median age of children hospitalized with RSV was higher in 2022 (9.6 months vs 6.0 months, P < .001). RSV-associated hospitalization rates were higher in 2021 and 2022 than the prepandemic average across age groups. Comparing 2021 to 2022, RSV-associated hospitalization rates were similar among children <2 years of age; however, children aged 24 to 59 months had significantly higher rates of RSV-associated hospitalization in 2022 (rate ratio 1.68 [95% confidence interval 1.37-2.00]). More RSV-positive hospitalized children received supplemental oxygen and there were more respiratory virus codetections in 2022 than in prepandemic seasons (P < .001 and P = .003, respectively), but there was no difference in the proportion hypoxemic, mechanically ventilated, or admitted to intensive care. CONCLUSIONS: The atypical 2021 and 2022 RSV seasons resulted in higher hospitalization rates with similar disease severity to prepandemic seasons.

2.
J Pediatr ; 271: 114045, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38561048

OBJECTIVE: To assess medical costs of hospitalizations and emergency department (ED) care associated with respiratory syncytial virus (RSV) disease in children enrolled in the New Vaccine Surveillance Network. STUDY DESIGN: We used accounting and prospective surveillance data from 6 pediatric health systems to assess direct medical costs from laboratory-confirmed RSV-associated hospitalizations (n = 2007) and ED visits (n = 1267) from 2016 through 2019 among children aged <5 years. We grouped costs into categories relevant to clinical care and administrative billing practices. We examined RSV-associated medical costs by care setting using descriptive and bivariate analyses. We assessed associations between known RSV risk factors and hospitalization costs and length of stay using χ2 tests of association. RESULTS: The median cost was $7100 (IQR $4006-$13 355) per hospitalized child and $503 (IQR $387-$930) per ED visit. Eighty percent (n = 2628) of our final sample were children aged younger than 2 years. Fewer weeks' gestational age was associated with greater median costs in hospitalized children (P < .001, ≥37 weeks of gestational age: $6840 [$3905-$12 450]; 29-36 weeks of gestational age: $7721 [$4362-$15 274]; <29 weeks of gestational age: $9131 [$4518-$19 924]). Infants born full term accounted for 70% of the total expenditures in our sample. Almost three quarters of the health care dollars spent originated in children younger than 12 months of age, the primary age group targeted by recommended RSV prophylactics. CONCLUSIONS: Reducing the cost burden for RSV-associated medical care in young children will require prevention of RSV in all young children, not just high-risk infants. Newly available maternal vaccine and immunoprophylaxis products could substantially reduce RSV-associated medical costs.

3.
MMWR Morb Mortal Wkly Rep ; 73(9): 209-214, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38457312

Respiratory syncytial virus (RSV) is the leading cause of hospitalization among infants in the United States. In August 2023, CDC's Advisory Committee on Immunization Practices recommended nirsevimab, a long-acting monoclonal antibody, for infants aged <8 months to protect against RSV-associated lower respiratory tract infection during their first RSV season and for children aged 8-19 months at increased risk for severe RSV disease. In phase 3 clinical trials, nirsevimab efficacy against RSV-associated lower respiratory tract infection with hospitalization was 81% (95% CI = 62%-90%) through 150 days after receipt; post-introduction effectiveness has not been assessed in the United States. In this analysis, the New Vaccine Surveillance Network evaluated nirsevimab effectiveness against RSV-associated hospitalization among infants in their first RSV season during October 1, 2023-February 29, 2024. Among 699 infants hospitalized with acute respiratory illness, 59 (8%) received nirsevimab ≥7 days before symptom onset. Nirsevimab effectiveness was 90% (95% CI = 75%-96%) against RSV-associated hospitalization with a median time from receipt to symptom onset of 45 days (IQR = 19-76 days). The number of infants who received nirsevimab was too low to stratify by duration from receipt; however, nirsevimab effectiveness is expected to decrease with increasing time after receipt because of antibody decay. Although nirsevimab uptake and the interval from receipt of nirsevimab were limited in this analysis, this early estimate supports the current nirsevimab recommendation for the prevention of severe RSV disease in infants. Infants should be protected by maternal RSV vaccination or infant receipt of nirsevimab.


Antibodies, Monoclonal, Humanized , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Child , Humans , United States/epidemiology , Seasons , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Hospitalization , Respiratory Tract Infections/epidemiology
5.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421935

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Case-Control Studies , Vaccine Efficacy
6.
MMWR Morb Mortal Wkly Rep ; 72(48): 1300-1306, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38032834

SARS-CoV-2 infection in young children is often mild or asymptomatic; however, some children are at risk for severe disease. Data describing the protective effectiveness of COVID-19 mRNA vaccines against COVID-19-associated emergency department (ED) visits and hospitalization in this population are limited. Data from the New Vaccine Surveillance Network, a prospective population-based surveillance system, were used to estimate vaccine effectiveness using a test-negative, case-control design and describe the epidemiology of SARS-CoV-2 in infants and children aged 6 months-4 years during July 1, 2022-September 30, 2023. Among 7,434 children included, 5% received a positive SARS-CoV-2 test result, and 95% received a negative test result; 86% were unvaccinated, 4% had received 1 dose of any vaccine product, and 10% had received ≥2 doses. When compared with receipt of no vaccines among children, receipt of ≥2 COVID-19 mRNA vaccine doses was 40% effective (95% CI = 8%-60%) in preventing ED visits and hospitalization. These findings support existing recommendations for COVID-19 vaccination of young children to reduce COVID-19-associated ED visits and hospitalization.


COVID-19 , Vaccines , Child , Infant , United States/epidemiology , Humans , Child, Preschool , COVID-19 Vaccines , SARS-CoV-2/genetics , Prospective Studies , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization , RNA, Messenger
7.
MMWR Morb Mortal Wkly Rep ; 71(40): 1253-1259, 2022 Oct 07.
Article En | MEDLINE | ID: mdl-36201373

The New Vaccine Surveillance Network (NVSN) is a prospective, active, population-based surveillance platform that enrolls children with acute respiratory illnesses (ARIs) at seven pediatric medical centers. ARIs are caused by respiratory viruses including influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), human parainfluenza viruses (HPIVs), and most recently SARS-CoV-2 (the virus that causes COVID-19), which result in morbidity among infants and young children (1-6). NVSN estimates the incidence of pathogen-specific pediatric ARIs and collects clinical data (e.g., underlying medical conditions and vaccination status) to assess risk factors for severe disease and calculate influenza and COVID-19 vaccine effectiveness. Current NVSN inpatient (i.e., hospital) surveillance began in 2015, expanded to emergency departments (EDs) in 2016, and to outpatient clinics in 2018. This report describes demographic characteristics of enrolled children who received care in these settings, and yearly circulation of influenza, RSV, HMPV, HPIV1-3, adenovirus, human rhinovirus and enterovirus (RV/EV),* and SARS-CoV-2 during December 2016-August 2021. Among 90,085 eligible infants, children, and adolescents (children) aged <18 years† with ARI, 51,441 (57%) were enrolled, nearly 75% of whom were aged <5 years; 43% were hospitalized. Infants aged <1 year accounted for the largest proportion (38%) of those hospitalized. The most common pathogens detected were RV/EV and RSV. Before the emergence of SARS-CoV-2, detected respiratory viruses followed previously described seasonal trends, with annual peaks of influenza and RSV in late fall and winter (7,8). After the emergence of SARS-CoV-2 and implementation of associated pandemic nonpharmaceutical interventions and community mitigation measures, many respiratory viruses circulated at lower-than-expected levels during April 2020-May 2021. Beginning in summer 2021, NVSN detected higher than anticipated enrollment of hospitalized children as well as atypical interseasonal circulation of RSV. Further analyses of NVSN data and continued surveillance are vital in highlighting risk factors for severe disease and health disparities, measuring the effectiveness of vaccines and monoclonal antibody-based prophylactics, and guiding policies to protect young children from pathogens such as SARS-CoV-2, influenza, and RSV.


COVID-19 , Influenza, Human , Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Adolescent , Antibodies, Monoclonal , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Child, Preschool , Humans , Infant , Influenza, Human/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , United States/epidemiology
8.
Microorganisms ; 9(1)2021 Jan 01.
Article En | MEDLINE | ID: mdl-33401429

We piloted a methodology for collecting and interpreting root cause-or environmental deficiency (ED)-information from Legionnaires' disease (LD) outbreak investigation reports. The methodology included a classification framework to assess common failures observed in the implementation of water management programs (WMPs). We reviewed reports from fourteen CDC-led investigations between 1 January 2015 and 21 June 2019 to identify EDs associated with outbreaks of LD. We developed an abstraction guide to standardize data collection from outbreak reports and define relevant parameters. We categorized each ED according to three criteria: ED type, WMP-deficiency type, and source of deficiency. We calculated the prevalence of EDs among facilities and explored differences between facilities with and without WMPs. A majority of EDs identified (81%) were classified as process failures. Facilities with WMPs (n = 8) had lower prevalence of EDs attributed to plumbed devices (9.1%) and infrastructure design (0%) than facilities without WMPs (n = 6; 33.3% and 24.2%, respectively). About three quarters (72%) of LD cases and 81% of the fatalities in our sample originated at facilities without a WMP. This report highlights the importance of WMPs in preventing and mitigating outbreaks of LD. Building water system process management is a primary obstacle toward limiting the root causes of LD outbreaks. Greater emphasis on the documentation, verification, validation, and continuous program review steps will be important in maximizing the effectiveness of WMPs.

...