Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 8(2)2020 09.
Article in English | MEDLINE | ID: mdl-32912923

ABSTRACT

BACKGROUND: Targeted therapies and immunotherapies are first-line treatments for patients with advanced melanoma. Serine-threonine protein kinase B-RAF (BRAF) and mitogen-activated protein kinase (MEK) inhibition leads to a 70% response rate in patients with advanced melanoma with a BRAFV600E/K mutation. However, acquired resistance occurs in the majority of patients, leading to relapse. Immunotherapies that activate immune cytotoxic effectors induce long-lasting responses in 30% of patients. In that context, combination of targeted therapies with immunotherapy (IT) is a promising approach. We considered boosting natural killer (NK) cell tumor immunosurveillance, as melanoma cells express stress-induced molecules and activate NK cell lysis. METHODS: Here we have generated vemurafenib (a BRAF inihibitor)-resistant (R) cells from BRAFV600E SK28 and M14-sensitive (S) melanoma cell lines and investigated how resistance interferes with immunogenicity to NK cells. We determined the levels of several soluble molecules including NK ligands in 61 melanoma patients at baseline and 6 months M post-treatment with targeted therapies or immunotherapies. RESULTS: Vemurafenib resistance involved activation of p-AKT in SK28R and of p-MEK/p-ERK in M14R cells and was accompanied by modulation of NK ligands. Compared with S cells, SK28R displayed an increased expression of natural killer group 2 D (NKG2D) receptor ligands (major histocompatibility complex class (MHC) I chain-related protein A (MICA) and UL16-binding protein 2 (ULBP2)) whereas M14R exhibited decreased ULBP2 . SK28R and M14R cells induced higher NK degranulation and interferon gamma secretion and were more efficiently lysed by donor and patient NK cells. SK28R showed increased tumor necrosis factor-related apoptosis-inducing ligand receptor II (TRAIL-RII) expression and TRAIL-induced apoptosis, and TRAIL-induced apoptosis of M14R was decreased. Combined BRAF/MEK inhibitors abrogated the growth of SK28S, M14S, and M14R cells, while growth of SK28R was maintained. BRAF/MEK inhibition attenuated NK activity but R cell lines activated polyfunctional NK cells and were lysed with high efficiency. We investigated the relationship of soluble NK ligands and response to treatment in a series of melanoma patients. Soluble NKG2D ligands known to regulate the receptor function have been associated to cancer progression. Serum analysis of patients treated with target therapies or IT indicates that soluble forms of NK ligands (MICA, B7H6, programmed cell death ligand 1, and carcinoembryonic antigen cell adhesion molecule 1) may correlate with clinical response. CONCLUSION: These results support strategies combining targeted therapies and NK-based immunotherapies.


Subject(s)
Killer Cells, Natural/immunology , Melanoma/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Aged , Cell Line, Tumor , Humans , Male , Melanoma/pathology , Middle Aged
2.
Cancer Immunol Res ; 5(7): 582-593, 2017 07.
Article in English | MEDLINE | ID: mdl-28576831

ABSTRACT

Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF-mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR.


Subject(s)
Indoles/administration & dosage , Melanoma/drug therapy , Natural Killer T-Cells/immunology , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/administration & dosage , B7 Antigens/immunology , Cell Lineage/immunology , Cell Proliferation/drug effects , GPI-Linked Proteins/immunology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Histocompatibility Antigens Class I/immunology , Humans , Indoles/immunology , Intercellular Signaling Peptides and Proteins/immunology , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Mutation , NK Cell Lectin-Like Receptor Subfamily K/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Natural Killer T-Cells/drug effects , Proto-Oncogene Proteins B-raf/immunology , Sulfonamides/immunology , Vemurafenib
3.
Proc Natl Acad Sci U S A ; 113(8): E968-77, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858453

ABSTRACT

Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.


Subject(s)
Antigens, CD/metabolism , Cell-Derived Microparticles/metabolism , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Proteomics , Biomarkers/metabolism , Humans
4.
Annu Rev Cell Dev Biol ; 30: 255-89, 2014.
Article in English | MEDLINE | ID: mdl-25288114

ABSTRACT

In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.


Subject(s)
Cell Communication/physiology , Cell-Derived Microparticles/physiology , Transport Vesicles/physiology , Animals , B-Lymphocytes/metabolism , Biological Transport , Centrifugation, Density Gradient , Cytological Techniques , Endosomes/physiology , Endosomes/ultrastructure , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Exosomes/physiology , Extracellular Fluid/metabolism , Humans , Membrane Fusion , Membrane Lipids/physiology , Membrane Proteins/physiology , MicroRNAs/metabolism , Neoplasms/metabolism , Prokaryotic Cells/metabolism , Prokaryotic Cells/ultrastructure , RNA, Messenger/metabolism , Reticulocytes/metabolism , SNARE Proteins/physiology , rab GTP-Binding Proteins/physiology
5.
J Cell Sci ; 126(Pt 24): 5553-65, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24105262

ABSTRACT

Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dendritic Cells/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Gene Knockdown Techniques , HeLa Cells , Histocompatibility Antigens Class II/metabolism , Humans , Microscopy, Immunoelectron , Multivesicular Bodies/metabolism , RNA, Small Interfering/genetics , Tetraspanin 30/metabolism
6.
PLoS One ; 7(7): e40311, 2012.
Article in English | MEDLINE | ID: mdl-22768350

ABSTRACT

Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8(+) T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8(+) T cell clone. Confocal microscopy with Alexa Fluor®(647)-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8(+) T cell cross-presentation thereafter.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Gamma Rays , MART-1 Antigen/immunology , Macrophages/immunology , Melanoma/immunology , Phagocytosis/immunology , Antigen Presentation/radiation effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Dendritic Cells/metabolism , Gene Expression Regulation, Neoplastic/immunology , Gene Expression Regulation, Neoplastic/radiation effects , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , MART-1 Antigen/biosynthesis , Macrophages/metabolism , Melanoma/metabolism , Microscopy, Confocal , Phagocytosis/radiation effects
7.
J Invest Dermatol ; 132(2): 365-74, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21993558

ABSTRACT

MART-1 and gp100 are prototypical melanoma antigen (Ag), but their clinical use as vaccines or as targets of cytotoxic lymphocytes achieved modest success. Possible explanations could be that as MART-1 and gp100 are melanocyte differentiation Ag, clonogenic Ag-non-expressing cells would be spared by immune effectors, or that clonogenic cells would be intrinsically resistant to cytotoxic lymphocytes. We therefore analyzed the proliferative status of MART-1/gp100-expressing and -non-expressing cells in biopsies, and the clonogenicity and sensitiveness to cytotoxic lymphocytes of the human cutaneous melanoma cell lines MEL-XY1 and MEL-XY3. Analysis of MART-1/gp100 and Ki-67 expression in 22 melanoma tumors revealed that MART-1/gp100-expressing and -non-expressing cells proliferated competitively. MART-1, gp100, tyrosinase, and CD271 expression were studied in MEL-XY1 and MEL-XY3 colonies. At 7 days, colonies displayed positive, negative, and mixed expression patterns. By 14 days, colonies of different sizes developed, showing cells with different clonogenic potential, and Ag were downregulated, suggesting Ag plasticity. Subcloning of MEL-XY1 colonies showed that Ag expression varied with time without interfering with clonogenicity. Finally, clonogenic, MART-1/gp100-expressing cells were lysed by specific CD8 lymphocytes. Thus, MART-1 and gp100 expression and plasticity would not interfere with proliferation or clonogenicity, and clonogenic cells may be lysed by cytotoxic lymphocytes.


Subject(s)
Cell Proliferation , MART-1 Antigen/analysis , Melanoma/pathology , Skin Neoplasms/pathology , gp100 Melanoma Antigen/analysis , DNA Methylation , Humans , Ki-67 Antigen/analysis , MART-1 Antigen/genetics , MART-1 Antigen/physiology , Melanoma/chemistry , Promoter Regions, Genetic , Skin Neoplasms/chemistry , T-Lymphocytes, Cytotoxic/immunology , gp100 Melanoma Antigen/physiology
8.
Article in English | MEDLINE | ID: mdl-24009879

ABSTRACT

Exosomes are extracellular vesicles of 50 to 100 nm in diameter, released by many cell types. Exosomes are formed inside the cell in intracellular endosomal compartments and are secreted upon fusion of these compartments with the plasma membrane. Cells also secrete other types of membrane vesicles, for instance, by outward budding from the plasma membrane, and although some of them clearly differ from exosomes by their structural features (larger size), others are possibly more difficult to separate. Here, using Rab27a inhibition to modulate exosome secretion, we show the existence of at least 2 distinct populations of vesicles after purification by classical ultracentrifugation from mouse tumor cell conditioned medium. Rab27a inhibition lead to decreased vesicular secretion of some conventional markers of exosomes (CD63, Tsg101, Alix and Hsc70) but did not affect secretion of others (CD9 and Mfge8). By electron microscopy, CD9 was observed on vesicles of various sizes, ranging from 30 nm to more than 150 nm in diameter. Flotation onto sucrose gradients showed different proportions of CD63, CD9 and Mfge8 not only in fractions of densities classically described for exosomes (around 1.15 g/ml) but also in fractions of densities over 1.20 g/ml, indicating the presence of heterogenous vesicle populations. CD9 and Mfge8 were also found in large vesicles pelleted at low speed and can thus not be considered as specific components of endosome-derived vesicles. We propose that the most commonly used protocols for exosome preparations co-purify vesicles from endosomal and other origins, possibly the plasma membrane. Future work will be required to improve techniques for accurate purification and characterization of the different populations of extracellular vesicles.

9.
Traffic ; 12(12): 1659-68, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21645191

ABSTRACT

Exosomes are small membrane vesicles, secreted by most cell types from multivesicular endosomes, and thought to play important roles in intercellular communications. Initially described in 1983, as specifically secreted by reticulocytes, exosomes became of interest for immunologists in 1996, when they were proposed to play a role in antigen presentation. More recently, the finding that exosomes carry genetic materials, mRNA and miRNA, has been a major breakthrough in the field, unveiling their capacity to vehicle genetic messages. It is now clear that not only immune cells but probably all cell types are able to secrete exosomes: their range of possible functions expands well beyond immunology to neurobiology, stem cell and tumor biology, and their use in clinical applications as biomarkers or as therapeutic tools is an extensive area of research. Despite intensive efforts to understand their functions, two issues remain to be solved in the future: (i) what are the physiological function(s) of exosomes in vivo and (ii) what are the relative contributions of exosomes and of other secreted membrane vesicles in these proposed functions? Here, we will focus on the current ideas on exosomes and immune responses, but also on their mechanisms of secretion and the use of this knowledge to elucidate the latter issue.


Subject(s)
Exosomes/physiology , Immunity, Cellular/physiology , Secretory Vesicles/physiology , Animals , Antigen Presentation/physiology , Cell Communication/immunology , Cell Communication/physiology , Exosomes/immunology , Humans , Immunity, Cellular/immunology , Secretory Vesicles/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...