Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hypertens ; 42(7): 1256-1268, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704218

ABSTRACT

OBJECTIVES: γδ T-lymphocytes play a role in angiotensin II (AngII)-induced hypertension, vascular injury and T-cell infiltration in perivascular adipose tissue (PVAT) in mice. Mesenteric arteries of hypertensive mice and subcutaneous arteries from obese humans present similar remodeling. We hypothesized that γδ T-cell subtypes in mesenteric vessels with PVAT (MV/PVAT) from hypertensive mice and subcutaneous adipose tissue (SAT) from obese humans, who are prone to develop hypertension, would be similar. METHODS: Mice were infused with AngII for 14 days. MV/PVAT T-cells were used for single-cell RNA-sequencing (scRNA-seq). scRNA-seq data (GSE155960) of SAT CD45 + cells from three lean and three obese women were downloaded from the Gene Expression Omnibus database. RESULTS: δ T-cell subclustering identified six δ T-cell subtypes. AngII increased T-cell receptor δ variable 4 ( Trdv4 ) + γδ T-effector memory cells and Cd28high δ T EM -cells, changes confirmed by flow cytometry. δ T-cell subclustering identified nine δ T-cell subtypes in human SAT. CD28 expressing δ T-cell subclustering demonstrated similar δ T-cell subpopulations in murine MV/PVAT and human SAT. Cd28+ γδ NKT EM and Cd28high δ T EM -cells increased in MV/PVAT from hypertensive mice and CD28high δ T EM -cells in SAT from obese women compared to the lean women. CONCLUSION: Similar CD28 + δ T-cells were identified in murine MV/PVAT and human SAT. CD28 high δ T EM -cells increased in MV/PVAT in hypertensive mice and in SAT from humans with obesity, a prehypertensive condition. CD28 + δ T-lymphocytes could have a pathogenic role in human hypertension associated with obesity, and could be a potential target for therapy.


Subject(s)
CD28 Antigens , Hypertension , Obesity , Subcutaneous Fat , Animals , Humans , Hypertension/immunology , Hypertension/metabolism , Mice , Subcutaneous Fat/metabolism , CD28 Antigens/metabolism , Female , Male , Angiotensin II , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Adipose Tissue/metabolism
2.
J Hypertens ; 41(11): 1701-1712, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37796207

ABSTRACT

OBJECTIVE: Extracellular ATP is elevated in hypertensive mice and humans and may trigger immune activation through the purinergic receptor P2X7 (P2RX7) causing interleukin-1ß production and T-cell activation and memory T-cell development. Furthermore, P2RX7 single nucleotide polymorphisms (SNP) are associated with hypertension. We hypothesized that P2RX7 activation contributes to hypertension and cardiovascular injury by promoting immune activation. METHODS: Male wild-type and P2rx7-/- mice were infused or not with angiotensin II (AngII) for 14 days. A second group of AngII-infused wild-type mice were co-infused with the P2RX7 antagonist AZ10606120 or vehicle. BP was monitored by telemetry. Cardiac and mesenteric artery function and remodeling were assessed using ultrasound and pressure myography, respectively. T cells were profiled in thoracic aorta/perivascular adipose tissue by flow cytometry. Associations between SNPs within 50 kb of P2RX7 transcription, and BP or hypertension were modeled in 384 653 UK Biobank participants. RESULTS: P2rx7 inactivation attenuated AngII-induced SBP elevation, and mesenteric artery dysfunction and remodeling. This was associated with decreased perivascular infiltration of activated and effector memory T-cell subsets. Surprisingly, P2rx7 knockout exaggerated AngII-induced cardiac dysfunction and remodeling. Treatment with a P2RX7 antagonist reduced BP elevation, preserved mesenteric artery function and reduced activated and effector memory T cell perivascular infiltration without adversely affecting cardiac function and remodeling in AngII-infused mice. Three P2RX7 SNPs were associated with increased odds of DBP elevation. CONCLUSION: P2RX7 may represent a target for attenuating BP elevation and associated vascular damage by decreasing immune activation.


Subject(s)
Hypertension , Vascular System Injuries , Humans , Mice , Male , Animals , Angiotensin II/pharmacology , Gene Knockout Techniques , Hypertension/chemically induced , Hypertension/genetics , T-Lymphocytes , Mice, Knockout , Mice, Inbred C57BL , Receptors, Purinergic P2X7/genetics
3.
Am J Hypertens ; 36(11): 619-628, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37549970

ABSTRACT

BACKGROUND: Memory T cells develop during an initial hypertensive episode, sensitizing mice to develop hypertension from further mild hypertensive challenges. We hypothesized that memory γδ T cells develop after a hypertensive challenge and sensitize mice to develop hypertension in response to a subsequent mild hypertensive challenge. METHODS: The first aim was to profile memory γδ T cells after a 14-day pressor dose angiotensin II (AngII) infusion (490 ng/kg/min, subcutaneously) in male mice. The second aim was to deplete γδ T cells during a second 14-day subpressor dose AngII challenge (140 ng/kg/min, subcutaneously) in mice pre-exposed to an initial pressor dose AngII challenge. The third aim was to transfer 2.5 × 105 live pre-activated or not γδ T cells from mice that had received a 14-day pressor dose AngII infusion or sham treatment, to naive recipient mice stimulated with a subpressor dose AngII infusion. RESULTS: Effector memory γδ T cells increased 5.2-fold in mesenteric vessels and perivascular adipose tissue, and 1.8-fold in mesenteric lymph nodes in pressor dose AngII-infused mice compared with sham-treated mice. Mice depleted of γδ T cells had 14 mm Hg lower systolic blood pressure (SBP) elevation than control mice from day 7 to 14 of subpressor dose AngII infusion. Adoptive transfer of γδ T cells from hypertensive mice induced an 18 mm Hg higher SBP elevation compared with a subpressor dose AngII infusion vs. γδ T cells transferred from sham-treated mice. CONCLUSIONS: Memory γδ T cells develop in response to hypertensive stimuli, and contribute to the pathogenesis of hypertension.

4.
Bio Protoc ; 13(10): e4679, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37251099

ABSTRACT

T cells localized to the kidneys and vasculature/perivascular adipose tissue (PVAT) play an important role in hypertension and vascular injury. CD4+, CD8+, and γδ T-cell subtypes are programmed to produce interleukin (IL)-17 or interferon-γ (IFNγ), and naïve T cells can be induced to produce IL-17 via the IL-23 receptor. Importantly, both IL-17 and IFNγ have been demonstrated to contribute to hypertension. Therefore, profiling cytokine-producing T-cell subtypes in tissues relevant to hypertension provides useful information regarding immune activation. Here, we describe a protocol to obtain single-cell suspensions from the spleen, mesenteric lymph nodes, mesenteric vessels and PVAT, lungs, and kidneys, and profile IL-17A- and IFNγ-producing T cells using flow cytometry. This protocol is different from cytokine assays such as ELISA or ELISpot in that no prior cell sorting is required, and various T-cell subsets can be identified and individually assessed for cytokine production simultaneously within an individual sample. This is advantageous as sample processing is kept to a minimum, yet many tissues and T-cell subsets can be screened for cytokine production in a single experiment. In brief, single-cell suspensions are activated in vitro with phorbol 12-myristate 13-acetate (PMA) and ionomycin, and Golgi cytokine export is inhibited with monensin. Cells are then stained for viability and extracellular marker expression. They are then fixed and permeabilized with paraformaldehyde and saponin. Finally, antibodies against IL-17 and IFNγ are incubated with the cell suspensions to report cytokine production. T-cell cytokine production and marker expression is then determined by running samples on a flow cytometer. While other groups have published methods to perform T-cell intracellular cytokine staining for flow cytometry, this protocol is the first to describe a highly reproducible method to activate, phenotype, and determine cytokine production by CD4, CD8, and γδ T cells isolated from PVAT. Additionally, this protocol can be easily modified to investigate other intracellular and extracellular markers of interest, allowing for efficient T-cell phenotyping.

5.
Hypertens Res ; 46(1): 40-49, 2023 01.
Article in English | MEDLINE | ID: mdl-36241706

ABSTRACT

A subset of interleukin (IL)-17A-producing γδ T cells called γδT17 cells may contribute to progression of hypertension. γδT17 cell development is in part dependent upon IL-23 receptor (IL-23R) stimulation. We hypothesized that angiotensin (Ang) II-induced blood pressure (BP) elevation and vascular injury would be blunted in Il23r knock-in (Il23rgfp/gfp) mice deficient in functional IL-23R. To test this hypothesis, we infused wild-type (WT) and Il23rgfp/gfp mice with Ang II (490 ng/kg/min, SC) for 7 or 14 days. We recorded BP by telemetry, assessed vascular function and remodeling using pressurized myography, and profiled T cell populations and cytokine production by flow cytometry. An additional set of Il23rgfp/gfp mice was infused with Ang II for 7 days and injected with interferon (IFN)-γ-neutralizing or control antibodies. Il23rgfp/gfp mice had smaller and stiffer mesenteric arteries and were not protected against Ang II-induced BP elevation. BP was higher in Il23rgfp/gfp mice than WT mice from day 3 until day 9 of Ang II infusion. Il23rgfp/gfp mice had less γδT17 cells and more IFN-γ-producing γδ, CD4+, and CD8+ T cells than WT mice. Seven days of Ang II infusion led to increased IFN-γ-producing γδ, CD4+, and CD8+ T cells in Il23rgfp/gfp mice, whereas only IFN-γ-producing γδ T cells were increased in WT mice. Blocking IFN-γ with a neutralizing antibody reduced the pressor response to 7 days of Ang II infusion in Il23rgfp/gfp mice. Functional IL-23R deficiency was associated with increased IFN-γ-producing T cells and exaggerated initial development of Ang II-induced hypertension, which was in part mediated by IFN-γ.


Subject(s)
Angiotensin II , CD8-Positive T-Lymphocytes , Hypertension , Animals , Mice , Angiotensin II/pharmacology , Blood Pressure , Hypertension/chemically induced , Interferon-gamma , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics
6.
Can J Cardiol ; 38(12): 1828-1843, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35597532

ABSTRACT

Hypertension is the leading risk factor for cardiovascular disease and mortality worldwide. Despite intensive research into the mechanisms underlying the development of hypertension, it remains difficult to control blood pressure in a large proportion of patients. Young men have a higher prevalence of hypertension compared with age-matched women, and this holds true until approximately the fifth decade of life. Following the onset of menopause, the incidence of hypertension among women begins to surpass that of men. The immune system has been demonstrated to play a role in the pathophysiology of hypertension, and biological sex and sex hormones can affect the function of innate and adaptive immune cell populations. Recent studies in male and female animal models of hypertension have begun to unravel the relationship among sex, immunity, and hypertension. Hypertensive male animals show a bias toward proinflammatory T-cell subsets, including interleukin (IL) 17-producing TH17 cells, and increased renal infiltration of T cells and inflammatory macrophages. Conversely, premenopausal female animals are largely protected from hypertension, and have a predilection for anti-inflammatory T regulatory cells and production of anti-inflammatory cytokines, such as IL-10. Menopause abrogates female protection from hypertension, which may be due to changes among anti-inflammatory T regulatory cell populations. Since development of novel treatments for hypertension has plateaued, determining the role of sex in the pathophysiology of hypertension may open new therapeutic avenues for both men and women.


Subject(s)
Hypertension , Sex Characteristics , Animals , Female , Male , Hypertension/epidemiology , Blood Pressure/physiology , T-Lymphocytes , Kidney
7.
Cell Immunol ; 357: 104217, 2020 11.
Article in English | MEDLINE | ID: mdl-32979762

ABSTRACT

γδ T cells are unconventional lymphocytes that could play a role in bridging the innate and adaptive immune system. Upon initial exposure to an antigen, some activated T cells become memory T cells that could be reactivated upon secondary immune challenge. Recently, subsets of γδ T cells with a restricted antigen repertoire and long-term persistence have been observed after clearance of viral and bacterial infections. These γδ T cells possess the hallmark ability of memory T cells to respond more strongly and proliferate to a higher extent upon secondary infection. Murine and primate models of Listeria monocytogenes and cytomegalovirus infection display these memory hallmarks and demonstrate γδ T cell memory responses. In addition, human and non-human primate infections with Mycobacterium tuberculosis, as well as non-human primate infection with monkeypox and studies on patients suffering from autoimmune disease (rheumatoid arthritis and multiple sclerosis) reveal memory-like responses corresponding with disease. Murine models of psoriatic disease (imiquimod) and parasite infections (malaria) exhibited shifts to memory phenotypes with repeated immune challenge. These studies provide strong support for the formation of immune memory in γδ T cells, and memory γδ T cells may have a widespread role in protective immunity and autoimmunity.


Subject(s)
Adaptive Immunity/immunology , Immunologic Memory/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Autoimmunity/immunology , Bacterial Infections/immunology , Humans , Immunity, Innate/immunology , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...