Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 152: 106435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340479

ABSTRACT

Advanced composites with superior wave attenuation or vibration isolation capacity are in high demand in engineering practice. In this study, we develop the hybrid dynamic shear-lag model with Bloch's theorem to investigate the hybrid effect of reinforcement on wave attenuation in bioinspired staggered composites. We present for the first time the relationship between macroscopic wave filtering and hybridization of building blocks in staggered composites. Viscoelasticity was taken into account for both reinforcement and matrix to reflect the damping effect on wave transmission. Our findings indicate that reinforcement hybridization significantly enhances wave attenuation performance through two critical parameters: the linear stiffness and linear density of reinforcements. For purely elastic constituents, reinforcement hybridization consistently improves wave attenuation by reducing the initial frequency of the first bandgap and broadening it. For viscoelastic constituents, increasing the heterogeneity of reinforcements can benefit wave attenuation, particularly in ultralow frequency regimes, due to the strengthening of the damping effect. Our case study demonstrates that controlling the difference in linear density can result in up to a 59 % reduction in energy transmission. Our analysis suggests that hybridizing reinforcements could provide a new approach to designing and synthesizing advanced composites with exceptional wave attenuation performance.


Subject(s)
Engineering , Vibration
2.
Sci Rep ; 10(1): 10806, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616858

ABSTRACT

Transformer noise is dominated by low frequency components, which are hard to be controlled with traditional noise control approaches. The shunt loudspeaker consisting of a closed-box loudspeaker and a shunt circuit has been proposed as an effective sound absorber by storing and dissipating the electrical energy converted from the incident sound. In this paper, an array of shunt loudspeakers is proposed to control the 100 Hz and 200 Hz components of transformer noise. The prototype under tests has a thickness of 11.8 cm, which is only 1/28 of the wavelength of 100 Hz. The sound absorption performance of the array under random incidence is analyzed with the parallel impedance method, and the arrangement of array elements is optimized. The test results in a reverberation room show that the proposed array has sound absorption coefficients of 1.04 and 0.93 at 100 Hz and 200 Hz, respectively, which provides potential of applying this type of thin absorbers for low-frequency sound control.

SELECTION OF CITATIONS
SEARCH DETAIL