Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 35(38)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38759630

ABSTRACT

Due to the suitable bandgap structure, efficient conversion rates of photon to electron, adjustable optical bandgap, high electron mobility/aspect ratio, low defects, and outstanding optical and electrical properties for device design, III-V semiconductors have shown excellent properties for optoelectronic applications, including photodiodes, photodetectors, solar cells, photocatalysis, etc. In particular, III-V nanostructures have attracted considerable interest as a promising photodetector platform, where high-performance photodetectors can be achieved based on the geometry-related light absorption and carrier transport properties of III-V materials. However, the detection ranges from Ultraviolet to Terahertz including broadband photodetectors of III-V semiconductors still have not been more broadly development despite significant efforts to obtain the high performance of III-V semiconductors. Therefore, the recent development of III-V photodetectors in a broad detection range from Ultraviolet to Terahertz, and future requirements are highly desired. In this review, the recent development of photodetectors based on III-V semiconductor with different detection range is discussed. First, the bandgap of III-V materials and synthesis methods of III-V nanostructures are explored, subsequently, the detection mechanism and key figures-of-merit for the photodetectors are introduced, and then the device performance and emerging applications of photodetectors are provided. Lastly, the challenges and future research directions of III-V materials for photodetectors are presented.

2.
J Environ Manage ; 167: 1-7, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26606195

ABSTRACT

Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration.


Subject(s)
Waste Disposal, Fluid/methods , Waste Products , Adsorption , Aluminum Hydroxide/chemistry , Aluminum Oxide/chemistry , Hydrogen-Ion Concentration , Phosphates/chemistry , Solutions , Temperature , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL