Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Microbiol ; 53(1): 82-91, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17496953

ABSTRACT

The production of polysaccharide intercellular adhesin (PIA) is an essential process in foreign body infections mediated by Staphylococcus epidermidis. Transcriptional regulation of the icaADBC operon, the genes responsible for production of enzymes that synthesize PIA, is multi-factorial and involves at least SarA and sigmaB. Transcriptional and promoter fusion studies revealed that the decreased transcription of the icaADBC operon observed in a S. epidermidis 1457 sigB mutant is not mediated through a direct interaction of sigmaB-RNA polymerase at the icaADBC promoter region but instead through the upregulation of IcaR, a known repressor of icaADBC transcription. Transcriptional analysis of a 1457 sigB-icaR double mutant confirmed that the decreased icaADBC transcript in 1457 sigB is IcaR dependent. Furthermore, primer extension studies suggest that the icaR promoter appears to be sigmaA dependent, suggesting that sigmaB indirectly controls icaR transcription through an unknown pathway. In addition, it was confirmed that the loss of SarA results in the loss of icaADBC transcription and PIA production in S. epidermidis. It was further demonstrated, through the over-production of SarA in 1457 sigB, that the loss of sarP1 promoter activity in 1457 sigB has little or no effect on the loss of PIA production in this mutant. Finally, it was demonstrated that PIA production could be restored in both 1457 sigB and 1457 sarA by complementing these mutants with a full-length icaADBC operon controlled by a cadmium-inducible noncognate promoter. It is concluded that sigmaB and SarA operate independently of each other to regulate PIA production and biofilm development in S. epidermidis.


Subject(s)
Bacterial Proteins/physiology , Biofilms/growth & development , Polysaccharides, Bacterial/metabolism , Sigma Factor/physiology , Staphylococcus epidermidis/physiology , Trans-Activators/physiology , Operon/physiology , Staphylococcus epidermidis/pathogenicity
2.
J Med Microbiol ; 53(Pt 5): 367-374, 2004 May.
Article in English | MEDLINE | ID: mdl-15096544

ABSTRACT

Production of biofilm in Staphylococcus epidermidis is mediated through enzymes produced by the four-gene operon ica and is subject to phenotypic variation. The purpose of these experiments was to investigate the regulation of ica and icaR transcription in phenotypic variants produced by multiple unrelated isolates of S. epidermidis. Ten isolates were chosen for the study, four of which contained IS256. IS256 mediates a reversible inactivation of ica in approximately 30 % of phenotypic variants. All ten strains produced at least two types of phenotypic variant (intermediate and smooth) in which biofilm formation was significantly impaired. Reversion studies indicated that all phenotypic variants were stable after overnight growth, but began to revert to other phenotypic forms after 5 days of incubation at 37 degrees C. ica transcriptional analysis was performed on phenotypic variants from three IS256-negative isolates; 1457, SE5 and 14765. This analysis demonstrated that ica transcription was significantly reduced in the majority of phenotypic variants, although two variants from SE5 and 1457 produced wild-type quantities of ica transcript. Analysis of seven additional phenotypic variants from SE5 revealed that ica expression was only reduced in three. Expression of icaR transcript was unaffected in all smooth phenotypic variants. Mutations within ica were identified in two SE5 variants with wild-type levels of ica transcription. It is concluded that mutation and transcriptional regulation of ica are the primary mechanisms that govern phenotypic variation of biofilm formation within IS256-negative S. epidermidis.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Mutation , Staphylococcus epidermidis/classification , Bacterial Proteins/genetics , Genotype , Humans , Molecular Sequence Data , Phenotype , Sequence Analysis, DNA , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL