Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Small GTPases ; 13(1): 114-127, 2022 01.
Article in English | MEDLINE | ID: mdl-33949915

ABSTRACT

RAS is the most frequently mutated oncogene in human cancer with nearly ~20% of cancer patients possessing mutations in one of three RAS genes (K, N or HRAS). However, KRAS is mutated in nearly 90% of pancreatic ductal carcinomas (PDAC). Although pharmacological inhibition of RAS has been challenging, KRAS(G12C)-specific inhibitors have recently entered the clinic. While KRAS(G12C) is frequently expressed in lung cancers, it is rare in PDAC. Thus, more broadly efficacious RAS inhibitors are needed for treating KRAS mutant-driven cancers such as PDAC. A RAS-specific tool biologic, NS1 Monobody, inhibits HRAS- and KRAS-mediated signalling and oncogenic transformation both in vitro and in vivo by targeting the α4-α5 allosteric site of RAS and blocking RAS self-association. Here, we evaluated the efficacy of targeting the α4-α5 interface of KRAS as an approach to inhibit PDAC development using an immunocompetent orthotopic mouse model. Chemically regulated NS1 expression inhibited ERK and AKT activation in KRAS(G12D) mutant KPC PDAC cells and reduced the formation and progression of pancreatic tumours. NS1-expressing tumours were characterized by increased infiltration of CD4 + T helper cells. These results suggest that targeting the #x3B1;4-#x3B1;5 allosteric site of KRAS may represent a viable therapeutic approach for inhibiting KRAS-mutant pancreatic tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinogenesis/pathology , Pancreatic Neoplasms
2.
Int J Mol Sci ; 21(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272708

ABSTRACT

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Subject(s)
Adherens Junctions/metabolism , Colon/metabolism , Epithelial Cells/metabolism , RNA Interference/physiology , Animals , Carcinogenesis/metabolism , Cell Line , Cell Proliferation/physiology , Colonic Neoplasms/metabolism , Cytoplasm/metabolism , Female , Humans , Intestinal Mucosa/metabolism , Male , Mice , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism
3.
Adv Cancer Res ; 139: 163-184, 2018.
Article in English | MEDLINE | ID: mdl-29941104

ABSTRACT

Gold nanoparticles (Au NPs) are very attractive and versatile nanoparticles since they have a remarkable capacity to absorb and scatter light, convert optical energy into heat via nonradiative electron relaxation dynamics, and surface chemistries that can be capitalized upon so that the nanoparticles act as drug carriers. Au NPs have excellent stability and biocompatibility, tailorable shapes and sizes, an easily functionalized surface, high drug-loading capacity, and low toxicity. The properties of Au NPs can be leveraged to develop more precisely targeted and effective cancer therapeutics. Au NPs have been used to target delivery of chemotherapeutic agents, complement radiation and thermal therapy, and enhance contrast for in vivo imaging of the tumor in a variety of cancer types and diseased organs.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Gold/chemistry , Metal Nanoparticles/administration & dosage , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Humans , Metal Nanoparticles/chemistry
4.
Acad Radiol ; 18(12): 1515-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21958600

ABSTRACT

RATIONALE AND OBJECTIVES: Diffraction-enhanced imaging (DEI) is a type of phase contrast x-ray imaging that has improved image contrast at a lower dose than conventional radiography for many imaging applications, but no studies have been done to determine if DEI might be useful for diagnosing lung injury. The goals of this study were to determine if DEI could differentiate between healthy and injured lungs for a rat model of gastric aspiration and to compare diffraction-enhanced images with chest radiographs. MATERIALS AND METHODS: Radiographs and diffraction-enhanced chest images of adult Sprague Dawley rats were obtained before and 4 hours after the aspiration of 0.4 mL/kg of 0.1 mol/L hydrochloric acid. Lung damage was confirmed with histopathology. RESULTS: The radiographs and diffraction-enhanced peak images revealed regions of atelectasis in the injured rat lung. The diffraction-enhanced peak images revealed the full extent of the lung with improved clarity relative to the chest radiographs, especially in the portion of the lower lobe that extended behind the diaphragm on the anteroposterior projection. CONCLUSIONS: For a rat model of gastric acid aspiration, DEI is capable of distinguishing between a healthy and an injured lung and more clearly than radiography reveals the full extent of the lung and the lung damage.


Subject(s)
Gastric Acid , Pneumonia, Aspiration/diagnostic imaging , X-Ray Diffraction/methods , Animals , Disease Models, Animal , Lung/diagnostic imaging , Lung/pathology , Male , Pneumonia, Aspiration/pathology , Radiography, Thoracic , Rats , Rats, Sprague-Dawley
5.
Acad Radiol ; 17(4): 433-40, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20036586

ABSTRACT

RATIONALE AND OBJECTIVES: Conventional mammography can not distinguish between transmitted, scattered, or refracted x-rays, thus requiring breast compression to decrease tissue depth and separate overlapping structures. Diffraction-enhanced imaging (DEI) uses monochromatic x-rays and perfect crystal diffraction to generate images with contrast based on absorption, refraction, or scatter. Because DEI possesses inherently superior contrast mechanisms, the current study assesses the effect of breast compression on lesion characteristic visibility with DEI imaging of breast specimens. MATERIALS AND METHODS: Eleven breast tissue specimens, containing a total of 21 regions of interest, were imaged by DEI uncompressed, half-compressed, or fully compressed. A fully compressed DEI image was displayed on a soft-copy mammography review workstation, next to a DEI image acquired with reduced compression, maintaining all other imaging parameters. Five breast imaging radiologists scored image quality metrics considering known lesion pathology, ranking their findings on a 7-point Likert scale. RESULTS: When fully compressed DEI images were compared to those acquired with approximately a 25% difference in tissue thickness, there was no difference in scoring of lesion feature visibility. For fully compressed DEI images compared to those acquired with approximately a 50% difference in tissue thickness, across the five readers, there was a difference in scoring of lesion feature visibility. The scores for this difference in tissue thickness were significantly different at one rocking curve position and for benign lesion characterizations. These results should be verified in a larger study because when evaluating the radiologist scores overall, we detected a significant difference between the scores reported by the five radiologists. CONCLUSIONS: Reducing the need for breast compression might increase patient comfort during mammography. Our results suggest that DEI may allow a reduction in compression without substantially compromising clinical image quality.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/methods , Physical Stimulation/methods , Radiographic Image Enhancement/methods , X-Ray Diffraction/methods , Female , Humans , Reproducibility of Results , Sensitivity and Specificity
6.
Acad Radiol ; 16(11): 1329-37, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19596593

ABSTRACT

RATIONALE AND OBJECTIVES: Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted, scattered, or refracted x-rays. Diffraction-enhanced imaging (DEI) allows for increased contrast with decreased radiation dose compared to conventional mammographic imaging because of monochromatic x-rays, its unique refraction-based contrast mechanism, and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. MATERIALS AND METHODS: The authors' laboratory developed a DEI prototype (DEI-PR) using a readily available tungsten x-ray tube source and traditional DEI crystal optics, providing soft tissue images at 60 keV. Images of full-thickness human breast tissue specimens were acquired on synchrotron-based DEI (DEI-SR), DEI-PR, and digital mammographic systems. A panel of expert radiologists evaluated lesion feature visibility and correlation with pathology after receiving training on the interpretation of refraction contrast mammographic images. RESULTS: For mammographic features (mass, calcification), no significant differences were detected between the DEI-SR and DEI-PR systems. Benign lesions were perceived as better seen by radiologists using the DEI-SR system than the DEI-PR system at the [111] reflectivity, with generalizations limited by small sample size. No significant differences between DEI-SR and DEI-PR were detected for any other lesion type (atypical, cancer) at either crystal reflectivity. CONCLUSIONS: Thus, except for benign lesion characterizations, the DEI-PR system's performance was roughly equivalent to that of the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/instrumentation , Mammography/methods , Radiographic Image Enhancement/instrumentation , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Equipment Design , Equipment Failure Analysis , Humans , Observer Variation , Pilot Projects , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
7.
Acad Radiol ; 16(8): 911-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19375952

ABSTRACT

RATIONALE AND OBJECTIVES: Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that differs from conventional radiography in its use of three physical mechanisms to generate contrast. DEI is able to generate contrast from x-ray absorption, refraction, and ultra-small-angle scatter rejection (extinction) to produce high-contrast images with a much lower radiation dose compared to conventional radiography. MATERIALS AND METHODS: A prototype DEI system was constructed using a 1-kW tungsten x-ray tube and a single silicon monochromator and analyzer crystal. The monochromator crystal was aligned to reflect the combined Kalpha1 (59.32 keV) and Kalpha2 (57.98 keV) characteristic emission lines of tungsten using a tube voltage of 160 kV. System performance and demonstration of contrast were evaluated using a nylon monofilament refraction phantom, full-thickness breast specimens, a human thumb, and a live mouse. RESULTS: Images acquired using this system successfully demonstrated all three DEI contrast mechanisms. Flux measurements acquired using this 1-kW prototype system demonstrated that this design can be scaled to use a more powerful 60-kW x-ray tube to generate similar images with an image time of approximately 30 seconds. This single-crystal pair design can be further modified to allow for an array of crystals to reduce clinical image times to <3 seconds. CONCLUSIONS: This paper describes the design, construction, and performance of a new DEI system using a commercially available tungsten anode x-ray tube and includes the first high-quality low-dose diffraction-enhanced images of full-thickness human tissue specimens.


Subject(s)
Body Burden , Radiographic Image Enhancement/instrumentation , Radiographic Image Interpretation, Computer-Assisted/instrumentation , X-Ray Diffraction/instrumentation , X-Ray Diffraction/trends , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Technology Assessment, Biomedical , X-Ray Diffraction/methods
8.
Neuroimage ; 46(4): 908-14, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19303447

ABSTRACT

Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses; amyloid beta (Abeta) plaques, a hallmark feature of AD, are small (approximately 50 microm) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize Abeta plaques. Results revealed small nodules in the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were Abeta plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Plaque, Amyloid/diagnostic imaging , Tomography, X-Ray Computed/methods , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Image Processing, Computer-Assisted , Immunohistochemistry , Mice , Mice, Transgenic , Plaque, Amyloid/pathology
9.
Phys Med Biol ; 52(7): 1923-45, 2007 Apr 07.
Article in English | MEDLINE | ID: mdl-17374920

ABSTRACT

Diffraction-enhanced imaging (DEI) is an analyser-based x-ray imaging method that produces separate images depicting the projected x-ray absorption and refractive properties of an object. Because the imaging model of DEI does not account for ultra-small-angle x-ray scattering (USAXS), the images produced in DEI can contain artefacts and inaccuracies in medical imaging applications. In this work, we investigate an extended DEI method for concurrent reconstruction of three images that depict an object's projected x-ray absorption, refraction and USAXS properties. The extended DEI method can be viewed as an implementation of the recently proposed multiple-image radiography paradigm. Validation studies are conducted by use of computer-simulated and synchrotron measurement data.


Subject(s)
Magnetic Resonance Imaging/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography/methods , Algorithms , Artifacts , Carotid Arteries/pathology , Computer Simulation , Humans , Image Processing, Computer-Assisted , Models, Statistical , Models, Theoretical , Phantoms, Imaging , Scattering, Radiation , Synchrotrons , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...