Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
J Neurooncol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916848

ABSTRACT

PURPOSE: To better define the role of surgery, we investigated survival and functional outcomes in patients with multiple brain metastases. METHODS: Pertinent clinical and radiological data of 131 consecutive patients (156 surgeries) were analyzed retrospectively. RESULTS: Surgical indications included mass effect (84.6%) and need for tissue acquisition (44.9%, for molecularly informed treatment: 10 patients). Major (i.e. CTCAE grade 3-5) neurological, surgical and medical complication were observed in 6 (3.8%), 12 (7.7%), and 12 (7.7%) surgical cases. Median preoperative and discharge KPS were 80% (IQF: 60-90%). Median overall survival (mOS) was 7.4 months. However, estimated 1 and 2 year overall survival rates were 35.6% and 25.1%, respectively. Survival was dismal (i.e. mOS ≤ 2.5 months) in patients who had no postoperative radio- and systemic therapy, or who incurred major complications. Multivariate analysis with all parameters significantly correlated with survival as univariate parameters revealed female sex, oligometastases, no major new/worsened neurological deficits, and postoperative radio- and systemic therapy as independent positive prognostic parameters. Univariate positive prognostic parameters also included histology (best survival in breast cancer patients) and less than median (0.28 cm3) residual tumor load. CONCLUSIONS: Surgery is a reasonable therapeutic option in many patients with multiple brain metastases. Operations should primarily aim at reducing mass effect thereby preserving the patients' functional health status which will allow for further local (radiation) and systemic therapy. Surgery for the acquisition of metastatic tissue (more recently for molecularly informed treatment) is another important surgical indication. Cytoreductive surgery may also carry a survival benefit by itself.

2.
Epilepsia Open ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845524

ABSTRACT

OBJECTIVE: Perineuronal nets (PNN) are specialized extracellular matrix (ECM) components of the central nervous system, frequently accumulating at the surface of inhibitory GABAergic interneurons. While an altered distribution of PNN has been observed in neurological disorders including Alzheimer's disease, schizophrenia and epilepsy, their anatomical distribution also changes during physiological brain maturation and aging. Such an age-dependent shift was experimentally associated also with hippocampal engram formation during brain maturation. Our aim was to histopathologically assess PNN in the hippocampus of adult and pediatric patients with temporal lobe epilepsy (TLE) compared to age-matched post-mortem control subjects and to compare PNN-related changes with memory impairment observed in our patient cohort. METHODS: Sixty-six formalin-fixed and paraffin-embedded tissue specimens of the human hippocampus were retrieved from the European Epilepsy Brain Bank. Twenty-nine patients had histopathologically confirmed hippocampal sclerosis (HS), and eleven patients suffered from TLE without HS. PNN were immunohistochemically visualized using an antibody directed against aggrecan and manually counted from hippocampus subfields and the subiculum. RESULTS: PNN density increased with age in both human controls and TLE patients. However, their density was significantly higher in all HS patients compared to age-matched controls. Intriguingly, TLE patients presented presurgically with better memory when their hippocampal PNN density was higher (p < 0.05). SIGNIFICANCE: Our results were compatible with age-dependent ECM specialization in the human hippocampus and its precocious aging in the epileptic condition. These observations confirm recent experimental animal models and also support the notion that PNN play a role in memory formation in the human brain. PLAIN LANGUAGE SUMMARY: "Perineuronal nets" (PNN) are a specialized compartment of the extracellular matrix (ECM), especially surrounding highly active neurons of the mammalian brain. There is evidence that PNN play a role in memory formation, brain maturation, and in some pathologies like Alzheimer's disease, schizophrenia or epilepsy. In this study, we investigated the role of PNN in patients suffering from drug-resistant focal epilepsy compared to controls. We found that with increasing age, more neurons are surrounded by PNN. Similarly, all epilepsy patients but especially patients with better memory performance also had more PNN. This study raises further interest in studying ECM molecules in the human brain under physiological and pathophysiological conditions.

3.
Epilepsy Behav ; 158: 109919, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941953

ABSTRACT

PURPOSE: Many patients with glioblastoma suffer from tumor-related seizures. However, there is limited data on the characteristics of tumor-related epilepsy achieving seizure freedom. The aim of this study was to characterize the course of epilepsy in patients with glioblastoma and the factors that influence it. METHODS: We retrospectively analyzed the medical records of glioblastoma patients treated at the University Hospital Erlangen between 01/2006 and 01/2020. RESULTS: In the final cohort of patients with glioblastoma (n = 520), 292 patients (56.2 %) suffered from tumor-related epilepsy (persons with epilepsy, PWE). Levetiracetam was the most commonly used first-line antiseizure medication (n = 245, 83.9 % of PWE). The onset of epilepsy was preoperative in 154/292 patients (52.7 %). 136 PWE (46.6 %) experienced only one single seizure while 27/292 PWE (9.2 %) developed drug-resistant epilepsy. Status epilepticus occurred in 48/292 patients (16.4 %). Early postoperative onset (within 30 days of surgery) of epilepsy and total gross resection (compared with debulking) were independently associated with a lower risk of further seizures. We did not detect dose-dependent pro- or antiseizure effects of radiochemotherapy. CONCLUSION: Tumor-related epilepsy occurred in more than 50% of our cohort, but drug-resistant epilepsy developed in less than 10% of cases. Epilepsy usually started before tumor surgery.

4.
Nat Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741011

ABSTRACT

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

6.
Acta Neuropathol ; 147(1): 28, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38305941

ABSTRACT

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Mice , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Neuroinflammatory Diseases , Proteins/genetics , Neurons/pathology , Mutation
7.
Transl Neurosci ; 15(1): 20220330, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38283997

ABSTRACT

Objective: Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches. Methods: We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested. Results: The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts. Conclusion: These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.

8.
Neurology ; 102(4): e208007, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38290094

ABSTRACT

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Epilepsy , Humans , Cohort Studies , Electroencephalography , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsy, Temporal Lobe/surgery , Magnetic Resonance Imaging , Retrospective Studies , Seizures , Treatment Outcome
9.
Acta Neuropathol Commun ; 11(1): 179, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946310

ABSTRACT

Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development , Child , Humans , Epilepsy/genetics , TOR Serine-Threonine Kinases/genetics , GTPase-Activating Proteins/genetics , Genotype , Malformations of Cortical Development/genetics
10.
J Neurooncol ; 164(2): 447-459, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37697210

ABSTRACT

PURPOSE: Multifocal/multicentric glioblastomas (mGBM) account for up to 20% of all newly diagnosed glioblastomas. The present study investigates the impact of cytoreductive surgery on survival and functional outcomes in patients with mGBM. METHODS: We retrospectively reviewed clinical and imaging data of 71 patients with newly diagnosed primary (IDH1 wildtype) mGBM who underwent operative treatment in 2015-2020 at the authors' institution. Multicentric/multifocal growth was defined by the presence of ≥ 2 contrast enhancing lesions ≥ 1 cm apart from each other. RESULTS: 36 (50.7%) patients had a resection and 35 (49.3%) a biopsy procedure. MGMT status, age, preoperative KPI and NANO scores as well as the postoperative KPI and NANO scores did not differ significantly between resected and biopsied cases. Median overall survival was 6.4 months and varied significantly with the extent of resection (complete resection of contrast enhancing tumor: 13.6, STR: 6.4, biopsy: 3.4 months; P = 0.043). 21 (58.3%) of resected vs. only 12 (34.3%) of biopsied cases had radiochemotherapy (p = 0.022). Multivariate analysis revealed chemo- and radiotherapy and also (albeit with smaller hazard ratios) extent of resection (resection vs. biopsy) and multicentric growth as independent predictors of patient survival. Involvement of eleoquent brain regions, as well as neurodeficit rates and functional outcomes did not vary significantly between the biopsy and the resection cohorts. CONCLUSION: Resective surgery in mGBM is associated with better survival. This benefit seems to relate prominently to an increased number of patients being able to tolerate effective adjuvant therapies after tumor resections. In addition, cytoreductive surgery may have a survival impact per se.

11.
Seizure ; 112: 48-53, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748366

ABSTRACT

PURPOSE: Epilepsy is a common comorbidity in patients with glioblastoma, however, clinical data on status epilepticus (SE) in these patients is sparse. We aimed to investigate the risk factors associated with the occurrence and adverse outcomes of SE in glioblastoma patients. METHODS: We retrospectively analysed electronic medical records of patients with de-novo glioblastoma treated at our institution between 01/2006 and 01/2020 and collected data on patient, tumour, and SE characteristics. RESULTS: In the final cohort, 292/520 (56.2 %) patients developed seizures, with 48 (9.4 % of the entire cohort and 16.4 % of patients with epilepsy, PWE) experiencing SE at some point during the course of their disease. SE was the first symptom of the tumour in 6 cases (1.2 %) and the first manifestation of epilepsy in 18 PWE (6.2 %). Most SE episodes occurred postoperatively (n = 37, 77.1 %). SE occurrence in PWE was associated with postoperative seizures and drug-resistant epilepsy. Adverse outcome (in-house mortality or admission to palliative care, 10/48 patients, 20.8 %), was independently associated with higher status epilepticus severity score (STESS) and Charlson Comorbidity Index (CCI), but not tumour progression. 32/48 SE patients (66.7 %) were successfully treated with first- and second-line agents, while escalation to third-line agents was successful in 6 (12.5 %) cases. CONCLUSION: Our data suggests a link between the occurrence of SE, postoperative seizures, and drug-resistant epilepsy. Despite the dismal oncological prognosis, SE was successfully treated in 79.2 % of the cases. Higher STESS and CCI were associated with adverse SE outcomes.


Subject(s)
Drug Resistant Epilepsy , Glioblastoma , Status Epilepticus , Humans , Glioblastoma/complications , Glioblastoma/epidemiology , Glioblastoma/therapy , Retrospective Studies , Status Epilepticus/epidemiology , Status Epilepticus/etiology , Status Epilepticus/therapy , Prognosis , Seizures/complications , Risk Factors , Drug Resistant Epilepsy/drug therapy , Severity of Illness Index
12.
Acta Neuropathol Commun ; 11(1): 129, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559109

ABSTRACT

Focal Cortical Dysplasia (FCD) is a frequent cause of drug-resistant focal epilepsy in children and young adults. The international FCD classifications of 2011 and 2022 have identified several clinico-pathological subtypes, either occurring isolated, i.e., FCD ILAE Type 1 or 2, or in association with a principal cortical lesion, i.e., FCD Type 3. Here, we addressed the DNA methylation signature of a previously described new subtype of FCD 3D occurring in the occipital lobe of very young children and microscopically defined by neuronal cell loss in cortical layer 4. We studied the DNA methylation profile using 850 K BeadChip arrays in a retrospective cohort of 104 patients with FCD 1 A, 2 A, 2B, 3D, TLE without FCD, and 16 postmortem specimens without neurological disorders as controls, operated in China or Germany. DNA was extracted from formalin-fixed paraffin-embedded tissue blocks with microscopically confirmed lesions, and DNA methylation profiles were bioinformatically analyzed with a recently developed deep learning algorithm. Our results revealed a distinct position of FCD 3D in the DNA methylation map of common FCD subtypes, also different from non-FCD epilepsy surgery controls or non-epileptic postmortem controls. Within the FCD 3D cohort, the DNA methylation signature separated three histopathology subtypes, i.e., glial scarring around porencephalic cysts, loss of layer 4, and Rasmussen encephalitis. Differential methylation in FCD 3D with loss of layer 4 mapped explicitly to biological pathways related to neurodegeneration, biogenesis of the extracellular matrix (ECM) components, axon guidance, and regulation of the actin cytoskeleton. Our data suggest that DNA methylation signatures in cortical malformations are not only of diagnostic value but also phenotypically relevant, providing the molecular underpinnings of structural and histopathological features associated with epilepsy. Further studies will be necessary to confirm these results and clarify their functional relevance and epileptogenic potential in these difficult-to-treat children.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development , Child , Young Adult , Humans , Child, Preschool , Retrospective Studies , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , DNA Methylation , Epilepsy/genetics , Drug Resistant Epilepsy/pathology , Magnetic Resonance Imaging
13.
Neurotherapeutics ; 20(5): 1294-1304, 2023 09.
Article in English | MEDLINE | ID: mdl-37278968

ABSTRACT

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2. We aimed to evaluate the effects of D-galactose supplementation in patients with histopathologically confirmed MOGHE, with uncontrolled seizures or cognitive impairment and epileptiform activity at the EEG after epilepsy surgery (NCT04833322). Patients were orally supplemented with D-galactose for 6 months in doses up to 1.5 g/kg/day and monitored for seizure frequency including 24-h video-EEG recording, cognition and behavioral scores, i.e., WISC, BRIEF-2, SNAP-IV, and SCQ, and quality of life measures, before and 6 months after treatment. Global response was defined by > 50% improvement of seizure frequency and/or cognition and behavior (clinical global impression of "much improved" or better). Twelve patients (aged 5-28 years) were included from three different centers. Neurosurgical tissue samples were available in all patients and revealed a brain somatic variant in SLC35A2 in six patients (non-present in the blood). After 6 months of supplementation, D-galactose was well tolerated with just two patients presenting abdominal discomfort, solved after dose spacing or reduction. There was a 50% reduction or higher of seizure frequency in 3/6 patients, with an improvement at EEG in 2/5 patients. One patient became seizure-free. An improvement of cognitive/behavioral features encompassing impulsivity (mean SNAP-IV - 3.19 [- 0.84; - 5.6]), social communication (mean SCQ - 2.08 [- 0.63; - 4.90]), and executive function (BRIEF-2 inhibit - 5.2 [- 1.23; - 9.2]) was observed. Global responder rate was 9/12 (6/6 in SLC35A2-positive). Our results suggest that supplementation with D-galactose in patients with MOGHE is safe and well tolerated and, although the efficacy data warrant larger studies, it might build a rationale for precision medicine after epilepsy surgery.


Subject(s)
Epilepsy , Galactose , Humans , Precision Medicine , Hyperplasia , Pilot Projects , Quality of Life , Epilepsy/therapy , Seizures , Electroencephalography/methods
14.
Epilepsia ; 64(7): 1853-1861, 2023 07.
Article in English | MEDLINE | ID: mdl-37203264

ABSTRACT

OBJECTIVE: Epilepsy is a common comorbidity of glioblastoma. Seizures may occur in various phases of the disease. We aimed to assess potential risk factors for seizures in accordance with the point in time at which they occurred. METHODS: We retrospectively analyzed medical files of adult patients with de novo glioblastoma treated at our institution between January 2006 and January 2020. We categorized seizures as preoperative seizures (POS), early postoperative seizures (EPS; before initiation of radio[chemo]therapy [RCT]), seizures during radiotherapy (SDR; during or <30 days after RCT), and posttherapeutic seizures (PTS; ≥30 days after completion of RCT). We addressed associations between patients' characteristics and their seizures. RESULTS: In the final cohort (N = 520), 292 patients experienced seizures. POS, EPS, SDR, and/or PTS occurred in 29.6% (154/520), 6.0% (31/520), 13.8% (70/509), and 36.1% (152/421) of patients, respectively. POS occurred more frequently in patients with higher Karnofsky Performance Scale scores (odds ratio [OR] = 3.27, p = .001) and tumor location in the temporal lobe (OR = 1.51, p = .034). None of the parameters we analyzed was related to the occurrence of EPS. SDR were independently associated with tumor location (parietal lobe, OR = 1.86, p = .027) and POS, but not EPS, and were independent of RCT. PTS were independently associated with tumor progression (OR = 2.32, p < .001) and with occurrence of SDR (OR = 3.36, p < .001), and negatively correlated with temporal lobe location (OR = .58, p < .014). In patients with tumors exclusively located in the temporal lobe, complete tumor resection was associated with a decreased risk of postoperative seizures. SIGNIFICANCE: Seizures in glioblastoma patients have various, time-dependent risk factors. Temporal lobe localization was a risk factor for preoperative seizures; surgery may have had a protective effect in these patients. RCT did not have dose-dependent pro- or anticonvulsive effects. PTS were associated with tumor progression.


Subject(s)
Brain Neoplasms , Epilepsy , Glioblastoma , Adult , Humans , Glioblastoma/complications , Retrospective Studies , Seizures/etiology , Seizures/complications , Epilepsy/epidemiology , Epilepsy/complications , Risk Factors , Brain Neoplasms/complications , Brain Neoplasms/epidemiology , Brain Neoplasms/pathology
15.
Epilepsia ; 64(7): 1800-1811, 2023 07.
Article in English | MEDLINE | ID: mdl-37114902

ABSTRACT

OBJECTIVE: Completeness as a predictor of seizure freedom is broadly accepted in epilepsy surgery. We focused on the requirements for a complete hemispherotomy and hypothesized that the disconnection of the insula contributes to a favorable postoperative seizure outcome. We analyzed surgical and nonsurgical predictors influencing long-term seizure outcome before and after a modification of our hemispherotomy technique. METHODS: We retrospectively studied surgical procedures, electroclinical parameters, magnetic resonance imaging (MRI) results, and follow-up data in all children who had undergone hemispherotomy between 2001 and 2018 at our institution. We used logistic regression models to analyze the influence of different factors on seizure outcome. RESULTS: A total of 152 patients were eligible for seizure outcome analysis only. Of these, 140 cases had complete follow-up data for ≥24 months and provide the basis for the following results. The median age at surgery was 4.3 years (range = .3-17.9 years). Complete disconnection (including the insular tissue) was achieved in 63.6% (89/140). At 2-year follow-up, seizure freedom (Engel class IA) was observed in 34.8% (8/23) with incomplete insular disconnection, whereas this was achieved in 88.8% (79/89) with complete surgical disconnection (p < .001, odds ratio [OR] = 10.41). In the latter group (n = 89), a potentially epileptogenic contralateral MRI lesion was the strongest predictor for postoperative seizure recurrence (OR = 22.20). SIGNIFICANCE: Complete surgical disconnection is the most important predictor of seizure freedom following hemispherotomy and requires disconnection of the insular tissue at the basal ganglia level. Even if the hemispherotomy is performed surgically completely, a potentially epileptogenic contralateral lesion on preoperative MRI significantly reduces the chances of postoperative seizure freedom.


Subject(s)
Epilepsy , Hemispherectomy , Humans , Child , Child, Preschool , Adolescent , Retrospective Studies , Treatment Outcome , Hemispherectomy/methods , Seizures/diagnostic imaging , Seizures/surgery , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsy/pathology , Magnetic Resonance Imaging , Electroencephalography
16.
Front Neurol ; 14: 1023950, 2023.
Article in English | MEDLINE | ID: mdl-37006485

ABSTRACT

Introduction: Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization. Methods: We investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses. Results: We found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells. Discussion: Overall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.

17.
Epileptic Disord ; 25(3): 343-359, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37070488

ABSTRACT

OBJECTIVE: Mild malformation with oligodendroglial hyperplasia (MOGHE) is a recently described clinicopathologic entity, associated with drug-resistant epilepsy and extensive epileptogenic networks. Knowledge is accumulating about particular electroclinical phenotypes, correlations with imaging, and potential prognostic significance for surgical outcomes. The study adds relevant information by documenting the presence of a hyperkinetic frontal lobe seizure phenotype in adolescents and an epileptic encephalopathy phenotype in young children. METHODS: Five cases were subjected to a structured presurgical evaluation protocol, including EEG-FMRI, chronic and acute invasive EEG, subjected to frontal lobe surgery with postoperative follow-up between 15 months and 7 years. RESULTS: In the two adult cases, surface EEG demonstrated lateralized widespread frontal lobe epileptogenicity and hyperkinetic semiological features. MRI demonstrated cortical white matter blurring and deeper white matter abnormalities. EEG-FMRI suggested concordant frontal lobe involvement. iEEG demonstrated a widespread frontal lobe epilepsy network. The three young children demonstrated a diffuse epileptic encephalopathy phenotype, with nonlocalizing, nonlateralizing surface EEG, and "spasms" as the main seizure type. MRI demonstrated extensive frontal lobe subcortical gray and white matter abnormalities, consistent with MOGHE literature for this age, while EEG-FMRI, in 2/3, demonstrated concordant frontal lobe involvement. They did not undergo chronic iEEG, and the resection was assisted by acute intraoperative ECoG. All cases were subjected to extensive frontal lobectomies with Engel class IA (2/5), IB (1/5), and IIB (2/5) outcomes. SIGNIFICANCE: The study confirms the presence of frontal lobe epilepsy and epileptic encephalopathy phenotypes, in accordance with epilepsy phenotypes already described in MOGHE literature. Presurgical evaluation studies, including EEG-FMRI, can provide strong lateralizing and localizing evidence of the epileptogenic networks involved. All responded favorably to extensive frontal lobe resections, despite widespread epileptic activity recorded by surface and intracranial EEG pre- and postoperatively; an epileptic encephalopathy phenotype, in the first years of life, should not discourage such a resection.


Subject(s)
Epilepsy, Frontal Lobe , Humans , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Frontal Lobe/surgery , Epilepsy, Frontal Lobe/pathology , Electroencephalography/methods , Hyperplasia , Seizures , Magnetic Resonance Imaging/methods
19.
Acta Neuropathol ; 145(6): 815-827, 2023 06.
Article in English | MEDLINE | ID: mdl-36973520

ABSTRACT

Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.


Subject(s)
Epilepsy , Ganglioglioma , Humans , Epilepsy/pathology , Ganglioglioma/genetics , Ganglioglioma/pathology , Mutation/genetics , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , MAP Kinase Signaling System
20.
Case Rep Otolaryngol ; 2023: 4727288, 2023.
Article in English | MEDLINE | ID: mdl-36742066

ABSTRACT

We report the rare occurrence of a temporal glioblastoma multiforme (GBM) showing transdural tumor extension into adjacent mastoid cells. As the dura mater provides a barrier to intraaxial tumors, GBM seldom penetrates into the skull base, even though it is a high-grade astrocytoma with a tendency to spread. Yet, some mechanisms of GBM-induced skull invasion have been identified, making this entity a very rare but nonetheless relevant differential diagnosis in otherwise ambiguous cases of an intracerebral tumor extending into the skull base. In addition, imaging markers that may assist in distinguishing extra- from intraaxial tumor infiltration of the temporal bone are described.

SELECTION OF CITATIONS
SEARCH DETAIL
...