Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
mSphere ; 8(4): e0025423, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37358297

ABSTRACT

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 (CYB5, SSK1, SSK2, HOG1, TRP1). A bZIP transcription repressor of mitochondrial function (CIN5) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata. Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. IMPORTANCE Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1-a key determinant of fluconazole resistance-is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.


Subject(s)
Antifungal Agents , Fluconazole , Humans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Candida glabrata/genetics , Cycloheximide/metabolism , Cycloheximide/pharmacology , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Xenobiotics/metabolism , Xenobiotics/pharmacology
2.
PLoS Pathog ; 19(6): e1011478, 2023 06.
Article in English | MEDLINE | ID: mdl-37363924

ABSTRACT

Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.


Subject(s)
Candida albicans , Candidiasis , Mice , Animals , Candida albicans/metabolism , Manganese/metabolism , Candidiasis/microbiology , Candida , Morphogenesis , Fungal Proteins/metabolism , Mammals
3.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214952

ABSTRACT

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 ( CYB5 , SSK1 , SSK2 , HOG1 , TRP1 ). A bZIP transcription repressor of mitochondrial function ( CIN5 ) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata . Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. Importance: Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1 - a key determinant of fluconazole resistance - is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.

4.
Genetics ; 221(1)2022 05 05.
Article in English | MEDLINE | ID: mdl-35274698

ABSTRACT

Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Candida glabrata/genetics , Flocculation , Genome, Fungal , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
Nature ; 596(7870): 114-118, 2021 08.
Article in English | MEDLINE | ID: mdl-34262174

ABSTRACT

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Subject(s)
Adaptive Immunity , Candida albicans/immunology , Candida albicans/physiology , Host-Pathogen Interactions/immunology , Symbiosis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antigens, Fungal/immunology , Candida albicans/pathogenicity , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Female , Fungal Vaccines/immunology , Gastrointestinal Microbiome/immunology , Humans , Hyphae/immunology , Immunoglobulin A/immunology , Male , Mice , Middle Aged , Young Adult
6.
Mol Microbiol ; 116(1): 260-276, 2021 07.
Article in English | MEDLINE | ID: mdl-33713372

ABSTRACT

Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.


Subject(s)
Candida glabrata/genetics , Cell Adhesion Molecules/genetics , Telomere/genetics , Candidiasis/microbiology , Cell Adhesion/physiology , Gene Expression Regulation, Fungal/genetics , Genome, Fungal/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics
7.
Mol Microbiol ; 114(6): 1006-1018, 2020 12.
Article in English | MEDLINE | ID: mdl-32808698

ABSTRACT

As part of the innate immune response, the host withholds metal micronutrients such as Cu from invading pathogens, and microbes respond through metal starvation stress responses. With the opportunistic fungal pathogen Candida albicans, the Cu-sensing transcription factor Mac1p governs the cellular response to Cu starvation by controlling Cu import. Mac1p additionally controls reactive oxygen species (ROS) homeostasis by repressing a Cu-containing superoxide dismutase (SOD1) and inducing Mn-containing SOD3 as a non-Cu alternative. We show here that C. albicans Mac1p is essential for virulence in a mouse model for disseminated candidiasis and that the cellular functions of Mac1p extend beyond Cu uptake and ROS homeostasis. Specifically, mac1∆/∆ mutants are profoundly deficient in mitochondrial respiration and Fe accumulation, both Cu-dependent processes. Surprisingly, these deficiencies are not simply the product of impaired Cu uptake; rather mac1∆/∆ mutants appear defective in Cu allocation. The respiratory defect of mac1∆/∆ mutants was greatly improved by a sod1∆/∆ mutation, demonstrating a role for SOD1 repression by Mac1p in preserving respiration. Mac1p downregulates the major Cu consumer SOD1 to spare Cu for respiration that is essential for virulence of this fungal pathogen. The implications for such Cu homeostasis control in other pathogenic fungi are discussed.


Subject(s)
Candida albicans/physiology , Candidiasis/microbiology , Copper/metabolism , Superoxide Dismutase/metabolism , Transcription Factors/physiology , Animals , Candida albicans/pathogenicity , Fungal Proteins , Gene Expression Regulation, Fungal , Host Microbial Interactions , Iron/metabolism , Mice , Mitochondria/metabolism , Mutation , Reactive Oxygen Species/metabolism , Stress, Physiological , Virulence
8.
Mol Microbiol ; 113(6): 1209-1224, 2020 06.
Article in English | MEDLINE | ID: mdl-32068314

ABSTRACT

Candida glabratais an opportunistic pathogen in humans, responsible for approximately 20% of disseminated candidiasis. Candida glabrata's ability to adhere to host tissue is mediated by GPI-anchored cell wall proteins (GPI-CWPs); the corresponding genes contain long tandem repeat regions. These repeat regions resulted in assembly errors in the reference genome. Here, we performed a de novo assembly of the C. glabrata type strain CBS138 using long single-molecule real-time reads, with short read sequences (Illumina) for refinement, and constructed telomere-to-telomere assemblies of all 13 chromosomes. Our assembly has excellent agreement overall with the current reference genome, but we made substantial corrections within tandem repeat regions. Specifically, we removed 62 genes of which 45 were scrambled due to misassembly in the reference. We annotated 31 novel ORFs of which 24 ORFs are GPI-CWPs. In addition, we corrected the tandem repeat structure of an additional 21 genes. Our corrections to the genome were substantial, with the length of new genes and tandem repeat corrections amounting to approximately 3.8% of the ORFeome length. As most corrections were within the coding regions of GPI-CWP genes, our genome assembly establishes a high-quality reference set of genes and repeat structures for the functional analysis of these cell surface proteins.


Subject(s)
Candida glabrata/metabolism , Cell Adhesion Molecules/genetics , Genome, Fungal/genetics , Glycosylphosphatidylinositols/genetics , Tandem Repeat Sequences/genetics , Candida glabrata/genetics , Candida glabrata/isolation & purification , Candidiasis/microbiology , Cell Adhesion/genetics , Cell Wall/genetics , High-Throughput Nucleotide Sequencing , Humans , Membrane Proteins/genetics , Open Reading Frames/genetics , Sequence Analysis, DNA
9.
Metallomics ; 12(3): 416-426, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31976503

ABSTRACT

Animals carefully control homeostasis of Cu, a metal that is both potentially toxic and an essential nutrient. During infection, various shifts in Cu homeostasis can ensue. In mice infected with Candida albicans, serum Cu progressively rises and at late stages of infection, liver Cu rises, while kidney Cu declines. The basis for these changes in Cu homeostasis was poorly understood. We report here that the progressive rise in serum Cu is attributable to liver production of the multicopper oxidase ceruloplasmin (Cp). Through studies using Cp-/- mice, we find this elevated Cp helps recover serum Fe levels at late stages of infection, consistent with a role for Cp in loading transferrin with Fe. Cp also accounts for the elevation in liver Cu seen during infection, but not for the fluctuations in kidney Cu. The Cu exporting ATPase ATP7B is one candidate for kidney Cu control, but we find no change in the pattern of kidney Cu loss during infection of Atp7b-/- mice, implying alternative mechanisms. To test whether fungal infiltration of kidney tissue was required for kidney Cu loss, we explored other paradigms of infection. Infection with the intravascular malaria parasite Plasmodium berghei caused a rise in serum Cu and decrease in kidney Cu similar to that seen with C. albicans. Thus, dynamics in kidney Cu homeostasis appear to be a common feature among vastly different infection paradigms. The implications for such Cu homeostasis control in immunity are discussed.


Subject(s)
Candida albicans/physiology , Candidiasis/metabolism , Copper/metabolism , Animals , Candidiasis/blood , Ceruloplasmin/metabolism , Copper/blood , Female , Homeostasis , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
10.
J Biol Chem ; 295(2): 570-583, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31806705

ABSTRACT

Copper (Cu)-only superoxide dismutases (SOD) represent a newly characterized class of extracellular SODs important for virulence of several fungal pathogens. Previous studies of the Cu-only enzyme SOD5 from the opportunistic fungal pathogen Candida albicans have revealed that the active-site structure and Cu binding of SOD5 strongly deviate from those of Cu/Zn-SODs in its animal hosts, making Cu-only SODs a possible target for future antifungal drug design. C. albicans also expresses a Cu-only SOD4 that is highly similar in sequence to SOD5, but is poorly characterized. Here, we compared the biochemical, biophysical, and cell biological properties of C. albicans SOD4 and SOD5. Analyzing the recombinant proteins, we found that, similar to SOD5, Cu-only SOD4 can react with superoxide at rates approaching diffusion limits. Both SODs were monomeric and they exhibited similar binding affinities for their Cu cofactor. In C. albicans cultures, SOD4 and SOD5 were predominantly cell wall proteins. Despite these similarities, the SOD4 and SOD5 genes strongly differed in transcriptional regulation. SOD5 was predominantly induced during hyphal morphogenesis, together with a fungal burst in reactive oxygen species. Conversely, SOD4 expression was specifically up-regulated by iron (Fe) starvation and controlled by the Fe-responsive transcription factor SEF1. Interestingly, Candida tropicalis and the emerging fungal pathogen Candida auris contain a single SOD5-like SOD rather than a pair, and in both fungi, this SOD was induced by Fe starvation. This unexpected link between Fe homeostasis and extracellular Cu-SODs may help many fungi adapt to Fe-limited conditions of their hosts.


Subject(s)
Candida/enzymology , Candidiasis/microbiology , Iron/metabolism , Superoxide Dismutase/metabolism , Candida/metabolism , Candida albicans/enzymology , Candida albicans/metabolism , Candida tropicalis/enzymology , Candida tropicalis/metabolism , Copper/metabolism , Humans , Models, Molecular , Reactive Oxygen Species/metabolism
11.
mSphere ; 4(4)2019 07 31.
Article in English | MEDLINE | ID: mdl-31366710

ABSTRACT

The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking. Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to participate in cell wall biosynthesis and specifically in polysaccharide remodeling. Among these proteins, the DFG family plays an essential role in controlling polar growth in yeast. In the filamentous fungus and opportunistic human pathogen Aspergillus fumigatus, the DFG gene family contains seven orthologous DFG genes among which only six are expressed under in vitro growth conditions. Deletions of single DFG genes revealed that DFG3 plays the most important morphogenetic role in this gene family. A sextuple-deletion mutant resulting from the deletion of all in vitro expressed DFG genes did not contain galactomannan in the cell wall and has severe growth defects. This study has shown that DFG members are absolutely necessary for the insertion of galactomannan into the cell wall of A. fumigatus and that the proper cell wall localization of the galactomannan is essential for correct fungal morphogenesis in A. fumigatusIMPORTANCE The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. Enzymes involved in postsynthesis polysaccharide modifications, such as cleavage, elongation, branching, and cross-linking, are essential for fungal life. Here, we investigated in Aspergillus fumigatus the role of the members of the Dfg family, one of the 4 GPI-anchored protein families common to yeast and molds involved in cell wall remodeling. Molecular and biochemical approaches showed that DFG members are required for filamentous growth, conidiation, and cell wall organization and are essential for the life of this fungal pathogen.


Subject(s)
Aspergillus fumigatus/genetics , Cell Wall/chemistry , Chitin/chemistry , Glycosylphosphatidylinositols/chemistry , Mannans/chemistry , beta-Glucans/chemistry , Aspergillus fumigatus/chemistry , Fungal Proteins/genetics , Galactose/analogs & derivatives , Gene Deletion , Proteoglycans , Virulence
12.
mSphere ; 4(3)2019 05 01.
Article in English | MEDLINE | ID: mdl-31043520

ABSTRACT

The fungal pathogen Candida glabrata can cause both mucosal and disseminated infections. Cell adhesion, a key step in colonization and infection, depends in C. glabrata primarily on the Epa family of cell adhesion proteins. While Epa proteins have been documented to mediate specific adhesion to host glycans, some of them also promote nonspecific adhesion to abiotic surfaces, though this is incompletely understood. Here we address this issue using a combination of genetics and single-cell force measurements. By quantifying the forces driving the attachment of single C. glabrata cells to hydrophobic and hydrophilic substrates, we show that cell adhesion is strongly increased by loss of Sir-mediated silencing. Using a series of mutant strains lacking specific EPA genes, we demonstrate unexpectedly that three major Epa proteins, Epa1, Epa6, and Epa7, primarily contribute to both hydrophilic and hydrophobic interactions, suggesting a broad role for the Epa adhesins in mediating specific and nonspecific adherence and implicating Epa genes in biofilm formation on abiotic surfaces.IMPORTANCECandida glabrata cell wall proteins mediate the attachment of C. glabrata to abiotic surfaces through molecular interactions that are poorly understood. Here, we study the forces engaged in Epa-dependent adhesion using single-cell techniques. Fungal adhesion to hydrophilic and hydrophobic substrates involves mainly three Epa proteins, suggesting a broad role for the Epa adhesins in mediating adherence. These proteins might represent a potential target for the development of innovative antifungal drugs.


Subject(s)
Candida glabrata/genetics , Cell Adhesion , Fungal Proteins/genetics , Lectins/genetics , Candida glabrata/physiology , Fungal Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Lectins/metabolism , Microscopy, Atomic Force , Mutation , Receptors, Artificial , Single-Cell Analysis , Surface Properties
13.
Med Teach ; 41(12): 1353-1358, 2019 12.
Article in English | MEDLINE | ID: mdl-30636463

ABSTRACT

The research supervisory role is becoming increasingly complex due to issues such as diversity of students; mismatched expectations between the student, supervisor and higher education institution and shorter and specific time-bound research outcomes. The current postgraduate research supervision culture and supervision practices should change. Moving towards person-centered research supervision practices may enhance the research environment, as healthful relationships between supervisors and postgraduate students may lead to increased postgraduate research outcomes. Using a World Café, we critically reflected on our existing research supervision practices. All healthcare educators involved in postgraduate research supervision were purposively selected to participate. During the café, we explored and shared ideas in a safe space. Twelve tips emerged, which can be implemented to move existing supervision practices towards person-centered research supervision practices. We present these twelve tips from the perspective of the four constructs of person-centeredness as outlined by McCormack and McCance - pre-requisites, environment, process, and outcomes. The use of these tips may enable both supervisors and students to flourish. Avoiding routine, ritual supervision practices and embracing person-centredness, will enable supervisors to form healthful relationships and put the postgraduate student at the heart of our supervision practices.


Subject(s)
Administrative Personnel/psychology , Delivery of Health Care , Education, Medical, Graduate/methods , Interprofessional Relations , Research Personnel/organization & administration , Research/organization & administration , Humans , Research Personnel/psychology , Students, Medical
14.
Nature ; 560(7718): 392-396, 2018 08.
Article in English | MEDLINE | ID: mdl-30069047

ABSTRACT

Extant species have wildly different numbers of chromosomes, even among taxa with relatively similar genome sizes (for example, insects)1,2. This is likely to reflect accidents of genome history, such as telomere-telomere fusions and genome duplication events3-5. Humans have 23 pairs of chromosomes, whereas other apes have 24. One human chromosome is a fusion product of the ancestral state6. This raises the question: how well can species tolerate a change in chromosome numbers without substantial changes to genome content? Many tools are used in chromosome engineering in Saccharomyces cerevisiae7-10, but CRISPR-Cas9-mediated genome editing facilitates the most aggressive engineering strategies. Here we successfully fused yeast chromosomes using CRISPR-Cas9, generating a near-isogenic series of strains with progressively fewer chromosomes ranging from sixteen to two. A strain carrying only two chromosomes of about six megabases each exhibited modest transcriptomic changes and grew without major defects. When we crossed a sixteen-chromosome strain with strains with fewer chromosomes, we noted two trends. As the number of chromosomes dropped below sixteen, spore viability decreased markedly, reaching less than 10% for twelve chromosomes. As the number of chromosomes decreased further, yeast sporulation was arrested: a cross between a sixteen-chromosome strain and an eight-chromosome strain showed greatly reduced full tetrad formation and less than 1% sporulation, from which no viable spores could be recovered. However, homotypic crosses between pairs of strains with eight, four or two chromosomes produced excellent sporulation and spore viability. These results indicate that eight chromosome-chromosome fusion events suffice to isolate strains reproductively. Overall, budding yeast tolerates a reduction in chromosome number unexpectedly well, providing a striking example of the robustness of genomes to change.


Subject(s)
Artificial Gene Fusion/methods , Chromosomes, Fungal/genetics , Gene Editing , Karyotype , Microbial Viability/genetics , Saccharomyces cerevisiae/genetics , CRISPR-Cas Systems/genetics , Crosses, Genetic , Reproduction/genetics , Spores, Fungal/genetics , Spores, Fungal/physiology
15.
Infect Immun ; 86(2)2018 02.
Article in English | MEDLINE | ID: mdl-29133349

ABSTRACT

The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.


Subject(s)
Candida albicans/drug effects , Copper/metabolism , Leukocyte L1 Antigen Complex/pharmacology , Zinc/metabolism , Animals , Candida albicans/growth & development , Candida albicans/metabolism , Fungal Proteins/metabolism , Homeostasis/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
PLoS Pathog ; 13(12): e1006763, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29194441

ABSTRACT

Until recently, NADPH oxidase (NOX) enzymes were thought to be a property of multicellularity, where the reactive oxygen species (ROS) produced by NOX acts in signaling processes or in attacking invading microbes through oxidative damage. We demonstrate here that the unicellular yeast and opportunistic fungal pathogen Candida albicans is capable of a ROS burst using a member of the NOX enzyme family, which we identify as Fre8. C. albicans can exist in either a unicellular yeast-like budding form or as filamentous multicellular hyphae or pseudohyphae, and the ROS burst of Fre8 begins as cells transition to the hyphal state. Fre8 is induced during hyphal morphogenesis and specifically produces ROS at the growing tip of the polarized cell. The superoxide dismutase Sod5 is co-induced with Fre8 and our findings are consistent with a model in which extracellular Sod5 acts as partner for Fre8, converting Fre8-derived superoxide to the diffusible H2O2 molecule. Mutants of fre8Δ/Δ exhibit a morphogenesis defect in vitro and are specifically impaired in development or maintenance of elongated hyphae, a defect that is rescued by exogenous sources of H2O2. A fre8Δ/Δ deficiency in hyphal development was similarly observed in vivo during C. albicans invasion of the kidney in a mouse model for disseminated candidiasis. Moreover C. albicans fre8Δ/Δ mutants showed defects in a rat catheter model for biofilms. Together these studies demonstrate that like multicellular organisms, C. albicans expresses NOX to produce ROS and this ROS helps drive fungal morphogenesis in the animal host.


Subject(s)
Candida albicans/growth & development , Morphogenesis , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Animals , Biofilms , Candida albicans/metabolism , Candidiasis/metabolism , Male , Mice , Mice, Inbred BALB C
17.
Cell Host Microbe ; 20(4): 527-534, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27736647

ABSTRACT

Natural killer (NK) cells form an important arm of the innate immune system and function to combat a wide range of invading pathogens, ranging from viruses to bacteria. However, the means by which NK cells accomplish recognition of pathogens with a limited repertoire of receptors remain largely unknown. In the current study, we describe the recognition of an emerging fungal pathogen, Candida glabrata, by the human NK cytotoxic receptor NKp46 and its mouse ortholog, NCR1. Using NCR1 knockout mice, we observed that this receptor-mediated recognition was crucial for controlling C. glabrata infection in vitro and in vivo. Finally, we delineated the fungal ligands to be the C. glabrata adhesins Epa1, Epa6, and Epa7 and demonstrated that clearance of systemic C. glabrata infections in vivo depends on their recognition by NCR1. As NKp46 and NCR1 have been previously shown to bind viral adhesion receptors, we speculate that NKp46/NCR1 may be a novel type of pattern recognition receptor.


Subject(s)
Antigens, Ly/metabolism , Candida glabrata/immunology , Fungal Proteins/metabolism , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 1/metabolism , Animals , Antigens, Ly/genetics , Candidiasis/immunology , Disease Models, Animal , Humans , Mice, Inbred BALB C , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/genetics
18.
PLoS Pathog ; 12(3): e1005522, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27029023

ABSTRACT

Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.


Subject(s)
Candida glabrata/metabolism , Candidiasis, Oral/microbiology , Fluconazole/pharmacology , Animals , Candida albicans/drug effects , Candida albicans/metabolism , Candida glabrata/drug effects , Candida glabrata/pathogenicity , Cell Wall/metabolism , Coinfection , Female , Hyphae/metabolism , Mice
19.
Proc Natl Acad Sci U S A ; 112(38): E5336-42, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351691

ABSTRACT

Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs.


Subject(s)
Candida albicans/physiology , Candidiasis/microbiology , Copper/chemistry , Metals/chemistry , Superoxide Dismutase/metabolism , Animals , Antioxidants/chemistry , Copper/blood , Female , Genetic Engineering , Kidney/metabolism , Male , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic , Superoxide Dismutase-1
20.
Genetics ; 200(1): 47-58, 2015 May.
Article in English | MEDLINE | ID: mdl-25745023

ABSTRACT

Peptide tags fused to proteins are used in a variety of applications, including as affinity tags for purification, epitope tags for immunodetection, or fluorescent protein tags for visualization. However, the peptide tags can disrupt the target protein function. When function is disrupted by fusing a peptide to either the N or C terminus of the protein of interest, identifying alternative ways to create functional tagged fusion proteins can be difficult. Here, we describe a method to introduce protein tags internal to the coding sequence of a target protein. The method employs in vitro Tn7-transposon mutagenesis of plasmids for random introduction of the tag, followed by subsequent Gateway cloning steps to isolate alleles with mutations in the coding sequence of the target gene. The Tn7-epitope cassette is designed such that essentially all of the transposon is removed through restriction enzyme digestion, leaving only the protein tag at diverse sites internal to the ORF. We describe the use of this system to generate a panel of internally epitope-tagged versions of the Saccharomyces cerevisiae GPI-linked membrane protein Dcw1 and the Candida glabrata transcriptional regulator Sir3. This internal protein tagging system is, in principle, adaptable to tag proteins in any organism for which Gateway-adapted expression vectors exist.


Subject(s)
DNA Transposable Elements , Epitopes/genetics , Protein Engineering/methods , Base Sequence , Candida/genetics , Mannosidases/genetics , Membrane Glycoproteins/genetics , Molecular Sequence Data , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...