Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Genome Biol Evol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235046

ABSTRACT

The South American archaeological record has ample evidence of the socio-cultural dynamism of human populations in the past. This has also been supported through the analysis of ancient genomes, by showing evidence of gene flow across the region. While the extent of these signals is yet to be tested, the growing number of ancient genomes allows for more fine-scaled hypotheses to be evaluated. In this study, we assessed the genetic diversity of individuals associated with the Inka ritual, Qhapaq hucha. As part of this ceremony, one or more individuals were buried with Inka and local-style offerings on mountain summits along the Andes, leaving a very distinctive record. Using paleogenomic tools, we analyzed three individuals: two newly-generated genomes from El Plomo Mountain (Chile) and El Toro Mountain (Argentina), and a previously published genome from Argentina (Aconcagua Mountain). Our results reveal a complex demographic scenario with each of the individuals showing different genetic affinities. Furthermore, while two individuals showed genetic similarities with present-day and ancient populations from the southern region of the Inka empire, the third individual may have undertaken long-distance movement. The genetic diversity we observed between individuals from similar cultural contexts supports the highly diverse strategies the Inka implemented while incorporating new territories. More broadly, this research contributes to our growing understanding of the population dynamics in the Andes by discussing the implications and temporality of population movements in the region.

2.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826305

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-ß plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cell-cell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.

3.
Cell Rep ; 42(11): 113436, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37952157

ABSTRACT

Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.


Subject(s)
Neurodegenerative Diseases , Mice , Animals , Transcription Factors , Neuroinflammatory Diseases , Muscle, Skeletal , Mice, Transgenic , Aging , Central Nervous System , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
4.
Acta Neuropathol Commun ; 11(1): 90, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37269008

ABSTRACT

X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Mice , Humans , Male , Animals , Aged , Bulbo-Spinal Atrophy, X-Linked/metabolism , Bulbo-Spinal Atrophy, X-Linked/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Motor Neurons/metabolism , Mice, Transgenic , Phenotype , Nerve Degeneration/pathology
6.
Brain Plast ; 8(1): 65-77, 2022.
Article in English | MEDLINE | ID: mdl-36448044

ABSTRACT

Physical activity is a powerful lifestyle factor capable of improving cognitive function, modifying the risk for dementia associated with neurodegeneration and possibly slowing neurodegenerative disease progression in both men and women. However, men and women show differences in the biological responses to physical activity and in the vulnerabilities to the onset, progression and outcome of neurodegenerative diseases, prompting the question of whether sex-specific regulatory mechanisms might differentially modulate the benefits of exercise on the brain. Mechanistic studies aimed to better understand how physical activity improves brain health and function suggest that the brain responds to physical exercise by overall reducing neuroinflammation and increasing neuroplasticity. Here, we review the emerging literature considering sex-specific differences in the immune system response to exercise as a potential mechanism by which physical activity affects the brain. Although the literature addressing sex differences in this light is limited, the initial findings suggest a potential influence of biological sex in the brain benefits of exercise, and lay out a scientific foundation to support very much needed studies investigating the potential effects of sex-differences on exercise neurobiology. Considering biological sex and sex-differences in the neurobiological hallmarks of exercise will help to enhance our understanding of the mechanisms by which physical activity benefits the brain and also improve the development of treatments and interventions for diseases of the central nervous system.

8.
Biomolecules ; 11(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34680075

ABSTRACT

The increasing presence of micro- and nanoplastics (MNPLs) in the environment, and their consequent accumulation in trophic niches, could pose a potential health threat to humans, especially due to their chronic ingestion. In vitro studies using human cells are considered pertinent approaches to determine potential health risks to humans. Nevertheless, most of such studies have been conducted using short exposure times and high concentrations. Since human exposure to MNPLs is supposed to be chronic, there is a lack of information regarding the potential in vitro MNPLs effects under chronic exposure conditions. To this aim, we assessed the accumulation and potential outcomes of polystyrene nanoparticles (PSNPs), as a model of MNPLs, in undifferentiated Caco-2 cells (as models of cell target in ingestion exposures) under a relevant long-term exposure scenario, consisting of eight weeks of exposure to sub-toxic PSNPs concentrations. In such exposure conditions, culture-media was changed every 2-3 days to maintain constant exposure. The different analyzed endpoints were cytotoxicity, dysregulation of stress-related genes, genotoxicity, oxidative DNA damage, and intracellular ROS levels. These are endpoints that showed to be sensitive enough in different studies. The obtained results attest that PSNPs accumulate in the cells through time, inducing changes at the ultrastructural and molecular levels. Nevertheless, minor changes in the different evaluated genotoxicity-related biomarkers were observed. This would indicate that no DNA damage or oxidative stress is observed in the human intestinal Caco-2 cells after long-term exposure to PSNPs. This is the first study dealing with the long-term effects of PSNPs on human cultured cells.


Subject(s)
Intestines/drug effects , Nanoparticles/chemistry , Oxidative Stress/drug effects , Polystyrenes/pharmacology , Caco-2 Cells/drug effects , Cell Differentiation/drug effects , DNA Damage/drug effects , Humans , Microplastics/pharmacology , Nanoparticles/adverse effects , Polystyrenes/adverse effects
9.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417184

ABSTRACT

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Receptors, Androgen , Animals , Bulbo-Spinal Atrophy, X-Linked/genetics , Bulbo-Spinal Atrophy, X-Linked/therapy , Genetic Therapy , Mice , Phenotype , Protein Isoforms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
10.
Biomolecules ; 11(6)2021 06 09.
Article in English | MEDLINE | ID: mdl-34207836

ABSTRACT

Environmental plastic wastes are continuously degraded to their micro and nanoforms. Since in the environment they coexist with other pollutants, it has been suggested that they could act as vectors transporting different toxic trace elements, such as metals. To confirm this, we have assessed the potential interactions between nanopolystyrene, as a model of nanoplastic debris, and silver compounds (silver nanoparticles and silver nitrate), as models of metal contaminant. Using TEM-EDX methodological approaches, we have been able to demonstrate metal sorption by nanopolystyrene. Furthermore, using Caco-2 cells and confocal microscopy, we have observed the co-localization of nanopolystyrene/nanosilver in different cellular compartments, including the cell nucleus. Although the internalization of these complexes showed no exacerbated cytotoxic effects, compared to the effects of each compound alone, the silver/nanopolystyrene complexes modulate the cell's uptake of silver and slightly modify some harmful cellular effects of silver, such as the ability to induce genotoxic and oxidative DNA damage.


Subject(s)
Metal Nanoparticles/toxicity , Microplastics/adverse effects , Polystyrenes/toxicity , Biological Transport , Caco-2 Cells , DNA Damage/drug effects , Humans , Intestines/drug effects , Microplastics/chemistry , Nanoparticles/toxicity , Nanostructures/chemistry , Nanostructures/toxicity , Oxidative Stress/drug effects , Polystyrenes/chemistry , Silver/pharmacology , Silver Nitrate/pharmacology
11.
Front Neurol ; 12: 649452, 2021.
Article in English | MEDLINE | ID: mdl-34276532

ABSTRACT

Regular exercise plays an essential role in maintaining healthy neurocognitive function and central nervous system (CNS) immuno-metabolism in the aging CNS. Physical activity decreases the risk of developing Alzheimer's Disease (AD), is associated with better AD prognosis, and positively affects cognitive function in AD patients. Skeletal muscle is an important secretory organ, communicating proteotoxic and metabolic stress to distant tissues, including the CNS, through the secretion of bioactive molecules collectively known as myokines. Skeletal muscle undergoes significant physical and metabolic remodeling during exercise, including alterations in myokine expression profiles. This suggests that changes in myokine and myometabolite secretion may underlie the well-documented benefits of exercise in AD. However, to date, very few studies have focused on specific alterations in skeletal muscle-originating secreted factors and their potential neuroprotective effects in AD. In this review, we discuss exercise therapy for AD prevention and intervention, and propose the use of circulating myokines as novel therapeutic tools for modifying AD progression.

12.
J Neurosci Res ; 99(1): 5-6, 2021 01.
Article in English | MEDLINE | ID: mdl-32924227
13.
J Neurosci Res ; 99(1): 332-348, 2021 01.
Article in English | MEDLINE | ID: mdl-32476168

ABSTRACT

Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.


Subject(s)
Calcium Channels/metabolism , Disks Large Homolog 4 Protein/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , Animals , Humans
14.
Arch Toxicol ; 94(9): 2997-3012, 2020 09.
Article in English | MEDLINE | ID: mdl-32592077

ABSTRACT

The universal presence of micro-nanoplastics (MNPLs) and its relative unknown effects on human health is a concern demanding reliable data to evaluate their safety. As ingestion is one of the main exposure routes for humans, we have assessed their hazard using two in vitro models that simulate the human intestinal barrier and its associated lymphoid system. Two different coculture models (differentiated Caco-2/HT29 intestinal cells and Caco-2/HT29 + Raji-B cells) were exposed to polystyrene nanoparticles (PSNPs) for 24 h. Endpoints such as viability, membrane integrity, NPS localization and translocation, ROS induction, and genotoxic damage were evaluated to have a comprehensive view of their potentially harmful effects. No significant cytotoxic effects were observed in any of the analyzed systems. In addition, no adverse effects were detected in the integrity or in the permeability of the barrier model. Nevertheless, confocal microscopy analysis showed that MNPLs were highly uptaken by both of the barrier model systems, and that translocation across the membrane occurred. Thus, MNPLs were detected into Raji-B cells, placed in the basolateral compartment of the insert. The internalization followed a dose-dependent pattern, as assessed by flow cytometry. Nonetheless, no genotoxic or oxidative DNA damage induction was detected in either case. Finally, no variations in the transcription of oxidative and stress genes could be detected in any of the in vitro barrier models. Our results show that MNPLs can enter and cross the epithelial barrier of the digestive system, as demonstrated when Raji-B cells were included in the model, but without exerting apparent hazardous effects.


Subject(s)
Intestines , Microplastics/toxicity , Polystyrenes/toxicity , Caco-2 Cells , Cell Differentiation , DNA Damage , HT29 Cells , Humans , Microscopy, Confocal , Nanoparticles , Permeability
15.
EMBO J ; 39(13): e103838, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484960

ABSTRACT

Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21-mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC-mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability.


Subject(s)
DNA Damage , G1 Phase Cell Cycle Checkpoints , Nucleotides/metabolism , Ribosomes/metabolism , HCT116 Cells , Humans , Nucleotides/genetics , Ribosomes/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Sci Rep ; 10(1): 2793, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066787

ABSTRACT

Carbon-based nanomaterials are being increasingly used, demanding strong information to support their safety in terms of human health. As ingestion is one of the most important exposure routes in humans, we have determined their potential risk by using an in vitro model simulating the human intestinal barrier and evaluated the effects of both graphene oxide (GO) and graphene nanoplatelets (GNPs). A coculture of differentiated Caco-2/HT29 cells presenting inherent intestinal epithelium characteristics (i.e. mucus secretion, brush border, tight junctions, etc.) were treated with GO or GNPs for 24 h. Different endpoints such as viability, membrane integrity, NPs localization, cytokines secretion, and genotoxic damage were evaluated to have a wide view of their potentially harmful effects. No cytotoxic effects were observed in the cells that constitute the barrier model. In the same way, no adverse effects were detected neither in the integrity of the barrier (TEER) nor in its permeability (LY). Nevertheless, a different bio-adhesion and biodistribution behavior was observed for GO and GNPs by confocal microscopy analysis, with a more relevant uptake of GNPs. No oxidative damage induction was detected, either by the DCFH-DA assay or the FPG enzyme in the comet assay. Conversely, both GO and GNPs were able to induce DNA breaks, as observed in the comet assay. Finally, low levels of anti-inflammatory cytokines were detected, suggesting a weak anti-inflammatory response. Our results show the moderate/severe risk posed by GO/GNPs exposures, given the observed genotoxic effects, suggesting that more extensive genotoxic evaluations must be done to properly assess the genotoxic hazard of these nanomaterials.


Subject(s)
DNA Damage/drug effects , Graphite/pharmacology , Intestines/drug effects , Permeability/drug effects , Biological Transport/drug effects , Caco-2 Cells/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Graphite/chemistry , HT29 Cells , Humans , Intestinal Mucosa/drug effects , Nanoparticles/chemistry , Nanostructures/chemistry , Tight Junctions/drug effects
17.
J Vis Exp ; (149)2019 07 18.
Article in English | MEDLINE | ID: mdl-31380846

ABSTRACT

Measurement of animal locomotion is a common behavioral tool used to describe the phenotype of a given disease, injury, or drug model. The low-cost method of gait analysis demonstrated here is a simple but effective measure of gait abnormalities in murine models. Footprints are analyzed by painting a mouse's feet with non-toxic washable paint and allowing the subject to walk through a tunnel on a sheet of paper. The design of the testing tunnel takes advantage of natural mouse behavior and their affinity for small dark places. The stride length, stride width, and toe spread of each mouse is easily measured using a ruler and a pencil. This is a well-established and reliable method, and it generates several metrics that are analogous to digital systems. This approach is sensitive enough to detect changes in stride early in phenotype presentation, and due to its non-invasive approach, it allows for testing of groups across life-span or phenotypic presentation.


Subject(s)
Behavior, Animal , Costs and Cost Analysis , Gait Analysis/methods , Neuromuscular Diseases/physiopathology , Phenotype , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Walking
18.
Inflamm Bowel Dis ; 25(Suppl 2): S5-S12, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31095706

ABSTRACT

Preclinical human IBD mechanisms is part of five focus areas of the Challenges in IBD research document, which also include environmental triggers, novel technologies, precision medicine and pragmatic clinical research. The Challenges in IBD research document provides a comprehensive overview of current gaps in inflammatory bowel diseases (IBD) research and delivers actionable approaches to address them. It is the result of a multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient centric research prioritization. In particular, the preclinical human IBD mechanisms manuscript is focused on highlighting the main research gaps in the pathophysiological understanding of human IBD. These research gap areas include: 1) triggers of immune responses; 2) intestinal epithelial homeostasis and wound repair; 3) age-specific pathophysiology; 4) disease complications; 5) heterogeneous response to treatments; and 6) determination of disease location. As an approach to address these research gaps, the prioritization of reverse translation studies is proposed in which clinical observations are the foundation for experimental IBD research in the lab, and for the identification of new therapeutic targets and biomarkers. The use of human samples in validating basic research findings and development of precision medicine solutions is also proposed. This prioritization aims to put emphasis on relevant biochemical pathways and humanized in vitro and in vivo models that extrapolate meaningfully to human IBD, to eventually yield first-in-class and effective therapies.


Subject(s)
Disease Models, Animal , Immunity, Mucosal/immunology , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/therapy , Intestinal Mucosa/pathology , Wound Healing , Animals , Humans , Inflammatory Bowel Diseases/etiology
19.
Food Chem Toxicol ; 123: 258-267, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30403969

ABSTRACT

In vitro models of the intestinal barrier are being increasingly used to evaluate nanoparticles (NPs) exposure risk. Nevertheless, most of these studies have focused on short-term exposures lasting no more than 24 h of duration, which could underestimate the toxic effects of a given compound under a more realistic setting. Since the assessment of longer exposure time-points is crucial to evaluate the risk of cumulative exposure to NPs, we have analyzed the effects of AgNPs at different exposure time-points between 6 h and 4 days on the barrier model system constituted by Caco-2/HT29 cells. Our results indicate that i) the system is stable during this time frame; ii) AgNPs affect the barrier's integrity only at the highest concentration tested (100 µg/mL), and only after 96 h of exposure; iii) cellular uptake of AgNPs showed a time-dependent and concentration-dependent increase; iv) translocation through the barrier was only observed at the highest concentration and only after 96 h of exposure; v) the expression of genes involved in the barrier's structure differs depending on the exposure time analyzed. All these results reinforce our proposal of expanding exposure times beyond 24 h when performing assays for hazard assessment of NPs using in vitro models of the intestinal barrier.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Caco-2 Cells , Cell Differentiation/drug effects , Cell Survival/drug effects , Gene Expression/drug effects , HT29 Cells , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/metabolism , Time Factors
20.
Neurobiol Dis ; 122: 83-93, 2019 02.
Article in English | MEDLINE | ID: mdl-29852219

ABSTRACT

Two decades ago, the recognition of protein misfolding and aggregate accumulation as defining features of neurodegenerative disease set the stage for a thorough examination of how protein quality control is maintained in neurons and in other non-neuronal cells in the central nervous system (CNS). Autophagy, a pathway of cellular self-digestion, has emerged as especially important for CNS proteostasis, and autophagy dysregulation has been documented as a defining feature of neurodegeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Transcription factor EB (TFEB) is one of the main transcriptional regulators of autophagy, as it promotes the expression of genes required for autophagosome formation, lysosome biogenesis, and lysosome function, and it is highly expressed in CNS. Over the last 7 years, TFEB has received considerable attention and TFEB dysfunction has been implicated in the pathogenesis of numerous neurodegenerative disorders. In this review, we delineate the current understanding of how TFEB dysregulation is involved in neurodegeneration, highlighting work done on AD, PD, HD, X-linked spinal & bulbar muscular atrophy, and amyotrophic lateral sclerosis. Because TFEB is a central node in defining autophagy activation status, efforts at understanding the basis for TFEB dysfunction are yielding insights into how TFEB might be targeted for therapeutic application, which may represent an exciting opportunity for the development of a treatment modality with broad application to neurodegeneration.


Subject(s)
Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL