Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 3255, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627406

ABSTRACT

Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomogeneous silicon neurons to achieve efficient sparse and decorrelated temporal signal encoding. We interface the full-custom SNN device to the BCI2000 real-time framework and configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO). We validate the setup on pre-recorded data and obtain HFO rates that are concordant with a previously validated offline algorithm (Spearman's ρ = 0.75, p = 1e-4), achieving the same postsurgical seizure freedom predictions for all patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht was compressed and transferred to Zurich for SNN processing and successful IED-HFO detection in real-time. These results further demonstrate how automated remote real-time detection may enable the use of HFO in clinical practice.


Subject(s)
Electrocorticography , Neural Networks, Computer , Humans , Electrocorticography/methods , Electroencephalography/methods
3.
Toxics ; 11(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37505532

ABSTRACT

In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.

4.
Sensors (Basel) ; 22(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684710

ABSTRACT

Stretchable materials are widely used for the realization of various sensors, but their radio frequency behavior has not been fully characterized so far. Here, an innovative method is proposed for deriving the surface impedance of this kind of materials. The material characterization represents a fundamental step for exploiting the material as a sensing element within a radio frequency device. Indeed, the proposed method is capable of retrieving the surface impedance of the material while it is being stretched, thus deriving a correspondent calibration curve. The characterization approach is based on a contactless measurement of the scattering parameters using waveguides. By exploiting the measured scattering parameters, the variation in the surface impedance as a function of both frequency and strain is recovered through an analytical inversion procedure. Numerical simulations were initially performed trough a numerical electromagnetic simulator, and subsequently, experimental validation was carried out using a dedicated test bench designed to ensure a contactless measurement of the stretchable material.

5.
Sensors (Basel) ; 22(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35271217

ABSTRACT

Wireless microwave sensors provide a practical alternative where traditional contact-based measurement techniques are not possible to implement or suffer from performance deterioration. Resonating elements are commonly used in these sensors as the sensing concept relies on the resonance properties of the employed structure. This work presents some simple guidelines for designing displacement sensors based on spiral resonator (SR) tags. The working principle of this sensor is based on the variation of the coupling strength between the SR tag and a probing microstrip loop with the distance between them. The performance of the sensor depends on the main design parameters, such as tag dimensions, filling factor, number of turns, and the size of probing loop. The guidelines provided herein can be used for the initial phase of the design process by helping to select a preliminary set of parameters according to the desired application requirements. The provided conclusions are supported using electromagnetic simulations and analytical expressions. Finally, a corrected equivalent circuit model that takes into account the phenomenon of the resonant frequency shift at small distances is provided. The findings are compared against experimental measurements to verify their validity.

6.
Opt Express ; 29(20): 31036-31047, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615205

ABSTRACT

An improved dual-polarized multifunctional switchable absorber/reflector with both wideband absorbing and wideband reflecting characteristics is presented in this paper. The proposed structure consists of three parts including a top-layer active frequency selective surface (AFSS) structure, a bottom-layer metal sheet and an air spacer in between. The polarization stability is satisfied by deploying the super-element topology, which contains four similar unitary elements arranged in a 2 × 2 matrix form. The PIN diode is employed as a RF switch in the AFSS structure for the purpose of switching. The bias networks responsible for different polarizations are intentionally separated through via holes. Multifunctional properties with four different operating states can be attained by controlling horizontally- and vertically-loaded PIN diodes independently. In addition, the biggest advantage of the proposed structure lies in its wideband features at both absorbing and reflecting states for different polarizations and incident angles. Finally, a prototype of the design is fabricated and measured to verify the simulation, and a good agreement between the simulated and observational results can be achieved under normal incidence as well as oblique incidence.

7.
Sensors (Basel) ; 21(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946500

ABSTRACT

A review of technological solutions for RFID sensing and their current or envisioned applications is presented. The fundamentals of the wireless sensing technology are summarized in the first part of the work, and the benefits of adopting RFID sensors for replacing standard sensor-equipped Wi-Fi nodes are discussed. Emphasis is put on the absence of batteries and the lower cost of RFID sensors with respect to other sensor solutions available on the market. RFID sensors are critically compared by separating them into chipped and chipless configurations. Both categories are further analyzed with reference to their working mechanism (electronic, electromagnetic, and acoustic). RFID sensing through chip-equipped tags is now a mature technological solution, which is continuously increasing its presence on the market and in several applicative scenarios. On the other hand, chipless RFID sensing represents a relatively new concept, which could become a disruptive solution in the market, but further research in this field is necessary for customizing its employment in specific scenarios. The benefits and limitations of several tag configurations are shown and discussed. A summary of the most suitable applicative scenarios for RFID sensors are finally illustrated. Finally, a look at some sensing solutions available on the market are described and compared.

8.
Sensors (Basel) ; 20(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839418

ABSTRACT

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On-Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.

9.
IEEE Trans Biomed Eng ; 67(10): 2806-2816, 2020 10.
Article in English | MEDLINE | ID: mdl-32031927

ABSTRACT

OBJECTIVE: A systematic analytical approach to design Spiral Resonators (SRs), acting as distributed magnetic traps (DMTs), for the decoupling of concentric Double-Tuned (DT) RF coils suitable for Ultra-High Field (7 T) MRI is presented. METHODS: The design is based on small planar SRs placed in between the two RF loops (used for signal detection of the two nuclei of interest). We developed a general framework based on a fully analytical approach to estimate the mutual coupling between the RF coils and to provide design guidelines for the geometry and number of SRs to be employed. Starting from the full-analytical estimations of the SRs geometry, electromagnetic simulations for improving and validating the performance can be carried out. RESULTS AND CONCLUSION: We applied the method to a test case of a DT RF coil consisting of two concentric and coplanar loops used for 7 T MRI, tuned at the Larmor frequencies of the proton (1H, 298 MHz) and sodium (23Na, 79 MHz) nuclei, respectively. We performed numerical simulations and experimental measurements on fabricated prototypes, which both demonstrated the effectiveness of the proposed design procedure. SIGNIFICANCE: The decoupling is achieved by printing the SRs on the same dielectric substrate of the RF coils thus allowing a drastic simplification of the fabrication procedure. It is worth noting that there are no physical connections between the decoupling SRs and the 1H/23Na RF coils, thus providing a mechanically robust experimental set-up, and improving the transceiver design with respect to other traditional decoupling techniques.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Magnetics , Phantoms, Imaging , Sodium
10.
Sci Rep ; 8(1): 7651, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769556

ABSTRACT

An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

11.
Sci Rep ; 6: 25458, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27181841

ABSTRACT

A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process.

12.
Opt Express ; 20(7): 7580-9, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453437

ABSTRACT

We present three monolithic metamaterial-based THz bandpass filters, the skewed circular slot rings, meandered slots and Jerusalem cross slots, to fit in the THz gap. These THz bandpass filters are comprised of a metal-dielectric-metal (MDM) structure that supports multiple resonances of electric dipole, magnetic dipole, and standing-wave-like modes. By exciting and further hybridizing these individual resonance modes, we demonstrate excellent performance of broad bandwidth and sharp band-edge transition beyond conventional bandpass filters. By further employing our ad hoc Genetic Algorithm (GA) and Periodic Method of Moments (PMM) to optimize our designs, we achieve an ultra-broad 3dB fractional bandwidth and sharp band-edge transition up to 82.2% and 58.3 dB/octave, respectively, benefiting the practical applications such as material recognition in security systems, imaging, and absorbers.


Subject(s)
Filtration/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...