Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Am J Physiol Endocrinol Metab ; 327(3): E302-E312, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39018175

ABSTRACT

Acute kidney injury (AKI) is a public health concern associated with high rates of mortality, even in milder cases. One of the reasons for the difficulty in managing AKI in patients is due to its association with pre-existing comorbidities, such as diabetes. In fact, diabetes increases the susceptibility to develop more severe AKI after renal ischemia. However, the long-term effects of this association are not known. Thus, an experimental model was designed to evaluate the chronic effects of renal ischemia/reperfusion (IR) in streptozotocin (STZ)-treated mice. We focused on the glomerular and tubulointerstitial damage, as well as kidney function and metabolic profile. It was found that pre-existing diabetes may potentiate progressive kidney disease after AKI, mainly by exacerbating proinflammatory and sustaining fibrotic responses and altering renal glucose metabolism. To our knowledge, this is the first report that highlights the long-term effects of renal IR on diabetes. The findings of this study can support the management of AKI in clinical practice.NEW & NOTEWORTHY This study demonstrated that early diabetes potentiates progressive kidney disease after ischemia/reperfusion (IR)-induced acute kidney injury, mainly by exacerbating pro-inflammatory and sustaining fibrotic responses and altering renal glucose metabolism. Thus, these findings will contribute to the therapeutic support of patients with type 1 diabetes with eventual renal IR intervention in clinical practice.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Progression , Kidney , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Male , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/etiology , Mice, Inbred C57BL , Streptozocin , Fibrosis
2.
Sci Rep ; 13(1): 22685, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114708

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Humans , Mice , Animals , Glomerulosclerosis, Focal Segmental/pathology , Claudin-1/genetics , Claudin-1/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Kidney Glomerulus/pathology , Podocytes/metabolism , Kidney Diseases/pathology , Doxorubicin/pharmacology
3.
Sci Rep ; 11(1): 19028, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561469

ABSTRACT

The present study aimed to investigate the interaction between early diabetes and renal IR-induced AKI and to clarify the mechanisms involved. C57BL/6J mice were assigned to the following groups: (1) sham-operated; (2) renal IR; (3) streptozotocin (STZ-55 mg/kg/day) and sham operation; and (4) STZ and renal IR. On the 12th day after treatments, the animals were subjected to bilateral IR for 30 min followed by reperfusion for 48 h, at which time the animals were euthanized. Renal function was assessed by plasma creatinine and urea levels, as well urinary protein contents. Kidney morphology and gene and protein expression were also evaluated. Compared to the sham group, renal IR increased plasma creatinine, urea and albuminuria levels and decreased Nphs1 mRNA expression and nephrin and WT1 protein staining. Tubular injury was observed with increased Havcr1 and Mki67 mRNA expression accompanied by reduced megalin staining. Renal IR also resulted in increased SQSTM1 protein expression and increased proinflammatory and profibrotic factors mRNA expression. Although STZ treatment resulted in hyperglycemia, it did not induce significant changes in renal function. On the other hand, STZ treatment aggravated renal IR-induced AKI by exacerbating renal dysfunction, glomerular and tubular injury, inflammation, and profibrotic responses. Thus, early diabetes constitutes a relevant risk factor for renal IR-induced AKI.


Subject(s)
Acute Kidney Injury/etiology , Diabetes Mellitus, Type 1/complications , Ischemia/complications , Kidney/blood supply , Reperfusion Injury/complications , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , Albuminuria , Animals , Biomarkers/metabolism , Creatinine/blood , Diabetes Mellitus, Experimental/complications , Disease Progression , Gene Expression , Kidney Tubules/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Risk Factors , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
4.
Front Physiol ; 11: 1076, 2020.
Article in English | MEDLINE | ID: mdl-32982795

ABSTRACT

Acute crystalline nephropathy is closely related to tubulointerstitial injury, but few studies have investigated glomerular changes in this condition. Thus, in the current study, we investigated the factors involved in glomerular and tubulointerstitial injury in an experimental model of crystalline-induced acute kidney injury (AKI). We treated male Wistar rats with a single injection of sodium oxalate (NaOx, 7 mg⋅100 g-1⋅day-1, resuspended in 0.9% NaCl solution, i.p.) or vehicle (control). After 24 h of treatment, food and water intake, urine output, body weight gain, and renal function were evaluated. Renal tissue was used for the morphological studies, quantitative PCR and protein expression studies. Our results revealed that NaOx treatment did not change metabolic or electrolyte and water intake parameters or urine output. However, the treated group exhibited tubular calcium oxalate (CaOx) crystals excretion, followed by a decline in kidney function demonstrated along with glomerular injury, which was confirmed by increased plasma creatinine and urea concentrations, increased glomerular desmin immunostaining, nephrin mRNA expression and decreased WT1 immunofluorescence. Furthermore, NaOx treatment resulted in tubulointerstitial injury, which was confirmed by tubular dilation, albuminuria, increased Kim-1 and Ki67 mRNA expression, decreased megalin and Tamm-Horsfall protein (THP) expression. Finally, the treatment induced increases in CD68 protein staining, MCP-1, IL-1ß, NFkappaB, and α-SMA mRNA expression, which are consistent with proinflammatory and profibrotic signaling, respectively. In conclusion, our findings provide relevant information regarding crystalline-induced AKI, showing strong tubulointerstitial and glomerular injury with a possible loss of podocyte viability.

5.
Sci Rep ; 8(1): 18012, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30573754

ABSTRACT

Podocyte injury is closely related to proteinuria and the progression of chronic kidney disease (CKD). Currently, there is no conclusive understanding about the mechanisms involved in albumin overload and podocyte apoptosis response. In this study, we sought to explore the ways by which intracellular albumin can mediate podocyte apoptosis. Here, immortalized mouse podocytes were treated with bovine serum albumin (BSA) at different times and concentrations, in the presence or absence of SB203580 (0.1 µM, inhibitor of mitogen-activated-protein kinase - p38MAPK). Using immunofluorescence images, flow cytometry and immunoblotting, we observed a time-dependent intracellular accumulation of fluorescent albumin-FITC-BSA, followed by concentration-and time-dependent effect of intracellular albumin overload on podocyte apoptosis, which was mediated by increased expression of the chaperone glucose-regulated-protein 78 (GRP 78) and phosphorylated inositol-requiring enzyme 1 alpha (pIRE1-α), as well as protein kinase C delta (PKC-δ), p38MAPK and cleaved caspase 12 expression. SB203580 prevented the cleavage of caspase 12 and the albumin-mediated podocyte apoptosis. These results suggest that intracellular albumin overload is associated with endoplasmic reticulum (ER) stress and upregulation of PKC-δ/p38MAPK/caspase 12 pathway, which may be a target for future therapeutic of albumin-induced podocyte apoptosis.


Subject(s)
Albumins/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Podocytes/physiology , Protein Kinase C-delta/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Albumins/metabolism , Albuminuria/metabolism , Albuminuria/pathology , Animals , Cells, Cultured , Cytoplasm/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Podocytes/metabolism , Serum Albumin/metabolism , Serum Albumin/pharmacology , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology
6.
BMC Nephrol ; 19(1): 179, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30005635

ABSTRACT

BACKGROUND: Angiotensin II (Ang II) contributes to the progression of renal diseases associated with proteinuria and glomerulosclerosis mainly by inducing podocyte apoptosis. In the present study, we investigated whether the chronic effects of Ang II via AT1 receptor (AT1R) would result in endoplasmic reticulum (ER) stress/PKC-delta/p38 MAPK stimulation, and consequently podocyte apoptosis. METHODS: Wistar rats were treated with Ang II (200 ng·kg-1·min-1, 42 days) and or losartan (10 mg·kg-1·day-1, 14 days). Immortalized mouse podocyte were treated with 1 µM Ang II and/or losartan (1 µM) or SB203580 (0.1 µM) (AT1 receptor antagonist and p38 MAPK inhibitor) for 24 h. Kidney sections and cultured podocytes were used to evaluate protein expression by immunofluorescence and immunoblotting. Apoptosis was evaluated by flow cytometry and intracellular pH (pHi) was analyzed using microscopy combined with the fluorescent probe BCECF/AM. RESULTS: Compared with controls, Ang II via AT1R increased chaperone GRP 78/Bip protein expression in rat glomeruli (p < 0.001) as well as in podocyte culture (p < 0.01); increased phosphorylated eIf2-α (p < 0.05), PKC-delta (p < 0.01) and p38 MAPK (p < 0.001) protein expression. Furthermore, Ang II induced p38 MAPK-mediated late apoptosis and increased the Bax/Bcl-2 ratio (p < 0.001). Simultaneously, Ang II via AT1R induced p38 MAPK-NHE1-mediated increase of pHi recovery rate after acid loading. CONCLUSION: Together, our results indicate that Ang II-induced podocyte apoptosis is associated with AT1R/ER stress/PKC-delta/p38 MAPK axis and enhanced NHE1-mediated pHi recovery rate.


Subject(s)
Angiotensin II/toxicity , Endoplasmic Reticulum Stress/physiology , Podocytes/metabolism , Protein Kinase C-delta/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Line, Transformed , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Enzyme Activation/physiology , Mice , Podocytes/drug effects , Protein Isoforms/metabolism , Random Allocation , Rats , Rats, Wistar
7.
Kidney Blood Press Res ; 42(6): 1277-1289, 2017.
Article in English | MEDLINE | ID: mdl-29262407

ABSTRACT

BACKGROUND/AIMS: To assess the possible contribution of the ß-adrenergic overstimulation in early stages of renal injury, the present study evaluated, in rats, the effects of the ß-adrenoceptor agonist isoproterenol (ISO) on renal function and morphology, as well as the renal mRNA and protein expression of the NADPH oxidase isoform 4 (Nox 4) and subunit p22phox, endoplasmic reticulum (ER) stress, pro-inflammatory, pro-apoptotic and renin-angiotensin system (RAS) components. METHODS: Wistar rats received ISO (0.3 mg.kg-1.day-1 s.c.) or vehicle (control) for eight days. At the end of the treatment, food and water intake, urine output and body weight gain were evaluated and renal function studies were performed. Renal tissue was used for the morphological, quantitative PCR and immunohistochemical studies. RESULTS: ISO did not change metabolic parameters or urine output. However it induced a decrease in renal blood flow and an increase in the filtration fraction. These changes were accompanied by increased cortical mRNA and protein expression for the renal oxidative stress components including Nox 4 and p22phox; ER stress, pro-inflamatory, pro-apoptotic as well as RAS components. ISO also induced a significant increase in medullar renin protein expression. CONCLUSION: These findings support relevant information regarding the contribution of specific ß-adrenergic hyperactivity in early stage of renal injury, indicating the reactive oxygen species, ER stress and intrarenal RAS as important factors in this process.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Kidney/injuries , Animals , Endoplasmic Reticulum Stress , Isoproterenol/pharmacology , Kidney Function Tests , Rats , Rats, Wistar , Reactive Oxygen Species , Renin-Angiotensin System
8.
Cell Physiol Biochem ; 40(3-4): 608-620, 2016.
Article in English | MEDLINE | ID: mdl-27898405

ABSTRACT

AIM: To assess the renal effects of chronic exposure to advanced glycation end-products (AGEs) in the absence of diabetes and the potential impact of concomitant treatment with the antioxidant N-acetyl cysteine (NAC). METHODS: Wistar rats received intraperitoneally 20 mg/kg/day of albumin modified (AlbAGE) or not (AlbC) by advanced glycation for 12 weeks and oral NAC (600mg/L; AlbAGE+NAC and AlbC+NAC, respectively). Biochemical, urinary and renal morphological analyses; carboxymethyl-lysine (CML, an AGE), CD68 (macrophage infiltration), and 4-hydroxynonenal (4-HNE, marker of oxidative stress) immunostaining; intrarenal mRNA expression of genes belonging to pathways related to AGEs (Ager, Ddost, Nfkb1), renin-angiotensin system (Agt, Ren, Ace), fibrosis (Tgfb1, Col4a1), oxidative stress (Nox4, Txnip), and apoptosis (Bax, Bcl2); and reactive oxidative species (ROS) content were performed. RESULTS: AlbAGE significantly increased urine protein-to-creatinine ratio; glomerular area; renal CML content and macrophage infiltration; expression of Ager, Nfkb1, Agt, Ren, Tgfb1, Col4a1, Txnip, Bax/Bcl2 ratio; and 4-HNE and ROS contents. Some of these effects were attenuated by NAC concomitant treatment. CONCLUSION: Because AGEs are highly consumed in modern diets and implicated in the progression of different kidney diseases, NAC could be a therapeutic intervention to decrease renal damage, considering that long-term restriction of dietary AGEs is difficult to achieve in practice.


Subject(s)
Acetylcysteine/pharmacology , Diabetes Mellitus, Experimental/pathology , Glycation End Products, Advanced/toxicity , Kidney/pathology , Animals , Antioxidants/pharmacology , Gene Expression Regulation/drug effects , Kidney/drug effects , Macrophages/drug effects , Macrophages/pathology , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Serum Albumin/metabolism
9.
Cell Physiol Biochem ; 33(2): 333-43, 2014.
Article in English | MEDLINE | ID: mdl-24557342

ABSTRACT

AIMS: In models of diabetes, distal nephron cells contribute to glucose uptake and oxidation. How these cells contribute to the use of glucose for the regulation of H(+) extrusion remains unknown. We used Madin-Darby Canine Kidney (MDCK) cells to investigate the effect of acute or chronic high glucose concentration on the abundance and activity of the Na(+)/H(+) exchanger (NHE-1). METHODS: Using RT-PCR, we also evaluated the mRNA expression for sodium glucose co-transporters SGLT1 and SGLT2. Protein abundance was analyzed using immunoblotting, and intracellular pH (pHi) recovery was evaluated using microscopy in conjunction with the fluorescent probe BCECF/AM. The Na(+)-dependent pHi recovery rate was monitored with HOE-694 (50 µM) and/or S3226 (10 µM), specific NHE-1 and NHE-3 inhibitors. RESULTS: MDCK cells did not express the mRNA for SGLT1 or SGLT2 but did express the GLUT2, NHE-1 and NHE-3 proteins. Under control conditions, we observed a greater contribution of NHE-1 to pHi recovery relative to the other H(+) transporters. Acute high glucose treatment increased the HOE-694-sensitive pHi recovery rate and p-Erk1/2 and p90(RSK) abundance. These parameters were reduced by PD-98059, a Mek inhibitor (1 µM). Chronic high glucose treatment also increased the HOE-694-sensitive pHi recovery rate and p-p38MAPK abundance. Both parameters were reduced by SB-203580, a p38MAPK inhibitor (10 µM). CONCLUSION: These results suggested that extracellular high glucose stimulated NHE-1 acutely and chronically through Mek/Erk1/2/p90(RSK) and p38MAPK pathways, respectively.


Subject(s)
Glucose/pharmacology , Kidney Tubules, Distal/metabolism , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sweetening Agents/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Dogs , Hydrogen-Ion Concentration , Kidney Tubules, Distal/cytology , MAP Kinase Kinase Kinases/genetics , Madin Darby Canine Kidney Cells , Mitogen-Activated Protein Kinase 3/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Sodium-Hydrogen Exchangers/genetics , p38 Mitogen-Activated Protein Kinases/genetics
10.
Eur J Pharmacol ; 721(1-3): 322-31, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24076179

ABSTRACT

Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1.


Subject(s)
Angiotensin II/pharmacology , Calcium/metabolism , Calmodulin/metabolism , Nephrons/cytology , Receptor, Angiotensin, Type 1/metabolism , Sodium-Hydrogen Exchangers/metabolism , Type C Phospholipases/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dogs , Gene Expression Regulation/drug effects , Hydrogen-Ion Concentration , Intracellular Space/chemistry , Intracellular Space/drug effects , Madin Darby Canine Kidney Cells , Mitogen-Activated Protein Kinases/metabolism , Receptor, Angiotensin, Type 2/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL