Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Nature ; 541(7636): 182-187, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28052057

ABSTRACT

Despite the global prevalence of gastric disease, there are few adequate models in which to study the fundus epithelium of the human stomach. We differentiated human pluripotent stem cells (hPSCs) into gastric organoids containing fundic epithelium by first identifying and then recapitulating key events in embryonic fundus development. We found that disruption of Wnt/ß-catenin signalling in mouse embryos led to conversion of fundic to antral epithelium, and that ß-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). We then used hFGOs to identify temporally distinct roles for multiple signalling pathways in epithelial morphogenesis and differentiation of fundic cell types, including chief cells and functional parietal cells. hFGOs are a powerful model for studying the development of the human fundus and the molecular bases of human gastric physiology and pathophysiology, and also represent a new platform for drug discovery.


Subject(s)
Gastric Fundus/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Body Patterning , Cell Differentiation , Cell Lineage , Drug Discovery/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/embryology , Epithelium/metabolism , Female , Gastric Fundus/cytology , Gastric Fundus/embryology , Homeodomain Proteins/metabolism , Humans , Male , Mice , Organoids/cytology , Organoids/embryology , Organoids/metabolism , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Pluripotent Stem Cells/cytology , SOXB1 Transcription Factors/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Trans-Activators/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/agonists
3.
Cell Rep ; 16(1): 66-78, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27320915

ABSTRACT

Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA), and hedgehog (Hh), but how these pathways interact in a gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then it promotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.


Subject(s)
Body Patterning , Endoderm/embryology , Hedgehog Proteins/metabolism , Lung/embryology , Mesoderm/embryology , Signal Transduction , Tretinoin/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/metabolism , Endoderm/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Intestines/embryology , Ligands , Lung/metabolism , Mesoderm/metabolism , Mice , Respiration , Stem Cells/metabolism , Wnt Proteins/metabolism , Xenopus Proteins/metabolism , Xenopus laevis
4.
Nature ; 516(7531): 400-4, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25363776

ABSTRACT

Gastric diseases, including peptic ulcer disease and gastric cancer, affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis, and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF, WNT, BMP, retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains, proliferative zones containing LGR5-expressing cells, surface and antral mucous cells, and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease, we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor, activation of signalling and induction of epithelial proliferation. Together, these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.


Subject(s)
Helicobacter Infections/physiopathology , Models, Biological , Organogenesis , Organoids/cytology , Pluripotent Stem Cells/cytology , Stomach/cytology , Cell Differentiation , Helicobacter pylori , Humans , Organoids/microbiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL