Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 50(1): 238-246, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33247581

ABSTRACT

Successful conservation and management of protected wildlife populations require reliable population abundance data. Traditional capture-mark-recapture methods can be costly, time-consuming, and invasive. Photographic mark-recapture (PMR) is a cost-effective, minimally invasive way to study population dynamics in species with distinct markings or color patterns. We tested the feasibility and the application of PMR using the software Hotspotter to identify Nicrophorus spp. from digital images of naturally occurring spot patterns on their elytra. We conducted a laboratory study evaluating the identification success of Hotspotter on Nicrophorus americanus (Olivier, 1790) and Nicrophorus orbicollis (Say, 1825) before implementation of a mark-recapture study in situ. We compared the performance of Hotspotter using both 'high-quality' and 'low-quality' photographs. For high-quality photographs, Hotspotter had a false rejection rate of 2.7-3.0% for laboratory-reared individuals and 3.9% for wild-caught individuals. For low-quality photographs, the false rejection rate was much higher, 48.8-53.3% for laboratory-reared individuals and 28.3% for wild-caught individuals. We subsequently analyzed encounter histories of wild-caught individuals with closed population models in Program MARK to estimate population abundance. In our study, we demonstrated the utility of using PMR in estimating population abundance for Nicrophorus spp. based on elytral spot patterns.


Subject(s)
Coleoptera , Animals , Photography , Population Density , Population Dynamics
2.
Ecol Evol ; 10(13): 6688-6701, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724542

ABSTRACT

Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter-gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter-gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter-gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter-gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior.

3.
Rapid Commun Mass Spectrom ; 34(12): e8785, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32196781

ABSTRACT

RATIONALE: Differences in stable isotope composition between an animal and its diet are quantified by experimentally derived diet-tissue discrimination factors. Appropriate discrimination factors between consumers and prey are essential for interpreting stable isotope patterns in ecological studies. While available for many taxa, these values are rarely estimated for organisms within the carrion food web. METHODS: We used a controlled-diet stable isotope feeding trial to quantify isotopic diet-tissue discrimination factors of carbon (δ13 C values) and nitrogen (δ15 N values) from laboratory-reared Nicrophorus americanus raised on carrion. We used exoskeleton samples of beetle elytra (wing covers) to determine diet-tissue discrimination factors using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. We also measured the isotopic compositions of five species of co-occurring, wild-caught burying beetles and evaluated feeding relationships. RESULTS: We found differences in stable carbon discrimination between carrion sources (mammalian and avian) and lab-reared beetles, but no difference in stable nitrogen discrimination. Values for δ13 C did not differ among wild-caught burying beetle species, but values for δ15 N were significantly different for the three species with overlapping breeding seasons. Furthermore, wild-caught burying beetles within our study area do not appear to use avian carrion resources to rear their young. CONCLUSIONS: This study informs future interpretation of stable isotope data for insects within the carrion food web. In addition, these results provide insight into carrion resources used by co-occurring burying beetle species in situ. We also demonstrated that independent of adult food type, the larval food source has a significant impact on the isotopic signatures of adult beetles, which can be estimated using a minimally invasive elytra clipping.


Subject(s)
Carbon Isotopes/analysis , Coleoptera/chemistry , Feeding Behavior/physiology , Nitrogen Isotopes/analysis , Animal Shells/chemistry , Animals , Animals, Laboratory/physiology , Animals, Wild/physiology , Diet , Female , Male
4.
PLoS One ; 14(12): e0225711, 2019.
Article in English | MEDLINE | ID: mdl-31790470

ABSTRACT

Direct transmission of bacteria to subsequent generations highlights the beneficial nature of host-bacteria relationships. In insects, this process is often mediated by the production of microbe-containing secretions. The objective of this study was to determine if the burying beetle, Nicrophorus defodiens, utilizes anal secretions to transmit adult digestive tract bacteria onto a small vertebrate carcass; thus creating the potential to aid in carcass preservation or pass digestive tract bacteria to their larval offspring. Using high-throughput Illumina sequencing of the 16S rRNA gene, we characterized bacterial communities of adult beetle digestive tracts, their anal secretions, and prepared mouse carcasses. We also examined unprepared carcass bacterial communities as a means to interpret community shifts that take place during carcass preservation. We found a vast reduction in diversity on prepared carcasses after anal secretion application. Overall, there was little similarity in bacterial communities among adult digestive tracts, anal secretions, and prepared carcasses, suggesting bacterial communities found in adult digestive tracts do not successfully colonize and achieve dominance on prepared carcasses by way of beetle anal secretions. We concluded that N. defodiens does not transmit their digestive tract bacterial communities to prepared carcasses in a wholesale manner, but may transmit key microbes, including core microbiome members, to preserved carcasses that may ultimately act to sustain larvae and serve as inocula for larval digestive tracts.


Subject(s)
Anal Canal/microbiology , Bodily Secretions/microbiology , Coleoptera/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , High-Throughput Nucleotide Sequencing
5.
PLoS One ; 12(10): e0186466, 2017.
Article in English | MEDLINE | ID: mdl-29088220

ABSTRACT

In species that require parental care, each parent can either care for their offspring or leave them in the care of the other parent. For each parent this creates three possible parental care strategies: biparental care, uniparental (male or female) care, and uniparental desertion by either the male or female. The burying beetle, Nicrophorus orbicollis, typically exhibits biparental care of offspring, and thus provides a unique system that allows us to compare the fitness benefits of these parental care strategies in an unconfounded way. In this study, we assess the lifetime fitness of biparental care, uniparental care, and uniparental desertion strategies in both male and female N. orbicollis. Specifically, we tested for increased fitness of the biparental care strategy compared to uniparental care strategies. Second, we test for equality of fitness between uniparental care and uniparental desertion strategies. Surprisingly, biparental care yields lower lifetime fitness for both parents compared to the other two strategies. Also, uniparental care and uniparental desertion strategies yielded equal fitness. The evolution of biparental care in this system is not consistent with the expectation of a mutual fitness benefit. We discuss other potential explanations for the evolution of biparental care in this system.


Subject(s)
Behavior, Animal , Coleoptera/physiology , Animals , Female , Male
6.
PLoS One ; 10(11): e0143762, 2015.
Article in English | MEDLINE | ID: mdl-26600016

ABSTRACT

Organisms are selected to maximize lifetime reproductive success by balancing the costs of current reproduction with costs to future survival and fecundity. Males and females typically face different reproductive costs, which makes comparisons of their reproductive strategies difficult. Burying beetles provide a unique system that allows us to compare the costs of reproduction between the sexes because males and females are capable of raising offspring together or alone and carcass preparation and offspring care represent the majority of reproductive costs for both sexes. Because both sexes perform the same functions of carcass preparation and offspring care, we predict that they would experience similar costs and have similar life history patterns. In this study we assess the cost of reproduction in male Nicrophorus orbicollis and compare to patterns observed in females. We compare the reproductive strategies of single males and females that provided pre- and post-hatching parental care. There is a cost to reproduction for both males and females, but the sexes respond to these costs differently. Females match brood size with carcass size, and thus maximize the lifetime number of offspring on a given size carcass. Males cull proportionately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring compared to females. Females exhibit an adaptive reproductive strategy based on resource availability, but male reproductive strategies are not adaptive in relation to resource availability.


Subject(s)
Coleoptera/physiology , Reproduction/physiology , Animals , Female , Humans , Male , Sexual Behavior, Animal/physiology
7.
PLoS One ; 9(10): e109165, 2014.
Article in English | MEDLINE | ID: mdl-25295755

ABSTRACT

The cost of reproduction theory posits that there are trade-offs between current and future reproduction because resources that are allocated to current offspring cannot be used for future reproductive opportunities. Two adaptive reproductive strategies have been hypothesized to offset the costs of reproduction and maximize lifetime fitness. The terminal investment hypothesis predicts that as individuals age they will allocate more resources to current reproduction as a response to decreasing residual reproductive value. The reproductive restraint hypotheses predicts that as individuals age they will allocate fewer resources to current reproduction to increase the chance of surviving for an additional reproductive opportunity. In this study, we test for adaptive responses to advancing age in male burying beetles, Nicrophorus orbicollis. Burying beetles use facultative biparental care, but the male typically abandons the brood before the female. Previous work in male burying beetles has suggested several factors to explain variation in male residency time, but no study has observed male behavior throughout their entire reproductive lifetimes to determine whether males change residency time in an adaptive way with age. We compared residency time of males that reproduced biparentally, uniparentally, and on different-sized carcasses to determine if they used an adaptive reproductive strategy. Males did not increase residency time as they aged when reproducing biparentally, but decreased residency time with age when reproducing uniparentally. A decrease in parental care with age is consistent with a reproductive restraint strategy. When female age increased over time, males did not increase their residency time to compensate for deteriorating female condition. To our knowledge, this is the first test of adaptive reproductive allocation strategies in male burying beetles.


Subject(s)
Coleoptera/physiology , Reproduction/physiology , Animals , Male , Sexual Behavior, Animal/physiology
8.
Am Nat ; 174(5): 673-84, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19775240

ABSTRACT

We evaluate the cost-of-reproduction hypothesis in the burying beetle Nicrophorus orbicollis and examine how the importance of this trade-off changes as females age (i.e., the terminal-investment hypothesis). These beetles breed on small vertebrate carcasses, which serve as a food resource for them and their offspring. Consistent with the cost-of-reproduction hypothesis, females manipulated to overproduce offspring suffered a reduction in fecundity and life span when compared to controls, although all reproducing females had reduced life spans compared to nonbreeding females. Older females produced larger broods and allocated less of the carcass to their own body mass and a greater proportion to offspring than did younger females. Resource allocation to offspring increased with age. Females given larger carcasses invested more in current reproduction and less in future reproduction than did females given smaller carcasses. Our results provide unconfounded support for both the cost-of-reproduction hypothesis (i.e., current reproduction constrains future reproductive output) and the terminal-investment hypothesis (i.e., the importance of the trade-off between current and future reproduction declines with age such that allocation to current reproduction should increase as females age).


Subject(s)
Coleoptera/physiology , Animals , Coleoptera/anatomy & histology , Female , Fertility , Longevity , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...