Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 118(5): 1258-1267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329213

ABSTRACT

The grapevine industry is of high economic importance in several countries worldwide. Its growing market demand led to an acceleration of the entire production processes, implying increasing use of water resources at the expense of environmental water balance and the hydrological cycle. Furthermore, in recent decades climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile from ecological and economical perspectives. Consequently, farmers' income and welfare are increasingly unpredictable and unstable. Therefore, it is urgent to improve the resilience of vineyards, and of agro-ecosystems in general, by developing sustainable and environmentally friendly farming practices by more rational biological and natural resources use. The PRIMA project PROSIT addresses these challenges by characterizing and harnessing grapevine-associated microbiota to propose innovative and sustainable agronomic practices. PROSIT aims to determine the efficacy of natural microbiomes transferred from grapevines adapted to arid climate to commonly cultivated grapevine cultivars. In doing so it will test those natural microbiome effects on drought tolerance. This multidisciplinary project will utilize in vitro culture techniques, bioimaging, microbiological tests, metabolomics, metabarcoding and epigenetic analyses. These will be combined to shed light on molecular mechanisms triggered in plants by microbial associations upon water stress. To this end it is hoped that the project will serve as a blueprint not only for studies uncovering the microbiome role in drought stress in a wide range of species, but also for analyzing its effect on a wide range of stresses commonly encountered in modern agricultural systems.


Subject(s)
Droughts , Microbiota , Soil Microbiology , Vitis , Vitis/microbiology , Vitis/genetics , Microbiota/physiology , Agriculture/methods , Climate Change
2.
Cells ; 10(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071294

ABSTRACT

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of 'Frappato' grapevine somatic embryos regenerated in medium supplemented with the growth regulators ß-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the DNA profiles were transferred in field conditions to analyze the effect of polyploidization. Different ploidy levels induced several anatomical and morphological changes of the shoots and mature leaves. Alterations have been also observed in stomata. The length and width of stomata of tetraploid leaves were 39.9 and 18.6% higher than diploids, respectively. The chloroplast number per guard cell pair was higher (5.2%) in tetraploid leaves. On the contrary, the stomatal index was markedly decreased (12%) in tetraploid leaves. The observed morphological alterations might be useful traits for breeding of grapevine varieties in a changing environment.


Subject(s)
Plant Leaves , Plant Shoots , Plant Stomata , Vitis , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Shoots/embryology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Stomata/embryology , Plant Stomata/genetics , Plant Stomata/growth & development , Polyploidy , Vitis/embryology , Vitis/genetics , Vitis/growth & development
3.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: mdl-35062256

ABSTRACT

Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which-Partitiviridae and Mitoviridae-were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin-two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects.


Subject(s)
Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , RNA, Viral/genetics , Yeasts/virology , High-Throughput Nucleotide Sequencing , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded , Saccharomyces/virology , Saccharomycetales/virology , Totivirus/classification , Totivirus/genetics , Transcriptome , Wine/virology
4.
Front Plant Sci ; 10: 1506, 2019.
Article in English | MEDLINE | ID: mdl-31850016

ABSTRACT

Grapevine (Vitis vinifera ssp. sativa) is a perennial crop especially important for wine and fruit production. The species is highly polymorphic with thousands of different varieties selected by farmers and clonally propagated. However, it is still debated whether grapevine domestication from its wild ancestor (V. vinifera ssp. sylvestris) has been a single event or rather it occurred on multiple occasions during the diffusion of its cultivation across the Mediterranean. Located in the center of the Basin, Sicily is its largest island and has served as a hotspot for all civilizations that have crossed the Mediterranean throughout history. Hundreds of unique grapevine cultivars are still cultivated in Sicily and its surrounding minor islands, though most of them are menaced by extinction. Wild grapevine is also present with isolated populations thriving along riverbanks. With the aim to evaluate the phylogenetic relationships among Sicilian varieties, and to assess the possible contribution of indigenous wild populations to the genetic makeup of cultivated grapevine, we analyzed 170 domestic cultivars and 125 wild plants, collected from 10 different populations, with 23 SSR markers. We also compared our data with published dataset from Eurasia. Results show that Sicilian wild populations are related to the cultivated Sicilian and Italian germplasm, suggesting events of introgression and/or domestication of local varieties.

5.
Front Plant Sci ; 10: 1256, 2019.
Article in English | MEDLINE | ID: mdl-31649712

ABSTRACT

Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits' biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...