Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Radioact ; 278: 107488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968644

ABSTRACT

224Ra (t1/2 = 3.6 d) has been widely used as a tracer in environmental water research. Here, we present a new method for measuring 224Ra in natural waters using a pulsed ionization chamber (PIC)-based radon detector. This method is based on the measurement of the 224Ra daughter isotope 220Rn (thoron) after reaching secular equilibrium within 7 min. Radium isotopes are concentrated on ''Mn-fibers'' before measurement of 220Rn, which can be distinguished from 222Rn by the difference in their half-lives. The measurement efficiency of the method is 0.20 ± 0.01 cps/Bq at an optimum airflow rate of 1.0 L/min and a water/Mn-fiber weight ratio of 1.0. Results from natural water samples obtained by this method agree well with analysis via RaDeCC, an established technique for 224Ra assessments. Since the PIC system is lighter compared to RaDeCC, easier to operate, and does not require the usage of helium carrier gas and desiccant, this method is recommended for in-situ 224Ra measurement in long-term fieldwork with limited logistical support.


Subject(s)
Radiation Monitoring , Radon , Water Pollutants, Radioactive , Radon/analysis , Radiation Monitoring/methods , Radiation Monitoring/instrumentation , Water Pollutants, Radioactive/analysis , Radium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL