Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters










Publication year range
1.
J Control Release ; 372: 43-58, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38866243

ABSTRACT

Chronic infections often involve biofilm-based bacteria, in which the biofilm results in significant resistance against antimicrobial agents and prevents eradication of the infection. The physicochemical barrier presented by the biofilm matrix is a major impediment to the delivery of many antibiotics. Previously, PEGylation has been shown to improve antibiotic penetration into biofilms in vitro. In these studies, PEGylating tobramycin was investigated both in vitro and in vivo. Two distinct PEGylated tobramycin molecules were synthesized (mPEG-SA-Tob and mPEG-AA-Tob). Then, in a P. aeruginosa biofilm in vitro model, we found that mPEG-SA-Tob can operate as a prodrug and showed 7 times more effectiveness than tobramycin (MIC80: 14 µM vs.100 µM). This improved biofilm eradication is attributable to the fact that mPEG-SA-Tob can aid tobramycin to penetrate through the biofilm and overcome the alginate-mediated antibiotic resistance. Finally, we used an in vivo biofilm-based chronic pulmonary infection rat model to confirm the therapeutic impact of mPEG-SA-Tob on biofilm-based chronic lung infection. mPEG-SA-Tob has a better therapeutic impact than tobramycin in that it cannot only stop P. aeruginosa from multiplying in the lungs but can also reduce inflammation caused by infections and prevent a recurrence infection. Overall, our findings show that PEGylated tobramycin is an effective treatment for biofilm-based chronic lung infections.

2.
Int J Pharm ; 659: 124277, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38802027

ABSTRACT

The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained ß-galactosidase (ß-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of ß-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the ß-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in ß-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The ß-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The ß-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the ß-gal release from the constructs was delayed to 3 h by printing a backing layer of ß-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the ß-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.


Subject(s)
Ink , Poloxamer , Polyethylene Glycols , Printing, Three-Dimensional , Trehalose , beta-Galactosidase , beta-Galactosidase/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Trehalose/chemistry , Viscosity , Excipients/chemistry , Drug Delivery Systems/methods , Mannitol/chemistry , Technology, Pharmaceutical/methods , Phosphines/chemistry
3.
Int J Pharm ; 654: 123959, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38430949

ABSTRACT

DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.


Subject(s)
COVID-19 , Nanoparticles , Vaccines, DNA , Humans , Polyethyleneimine/chemistry , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Transfection , DNA , Antigen-Presenting Cells , Cholesterol , Nanoparticles/chemistry
4.
Int J Pharm ; 653: 123892, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38350499

ABSTRACT

Monoclonal antibodies (mAbs) administered intranasally as dry powders can be potentially applied for the treatment or pre-exposure prevention of viral infections in the upper respiratory tract. However, a method to transform the mAbs from liquid to dry powders suitable for intranasal administration and a device that can spray the dry powders to the desired region of the nasal cavity are needed to fully realize the potentials of the mAbs. Herein, we report that thin-film freeze-dried mAb powders can be sprayed into the posterior nasal cavity using Aptar Pharma's Unidose (UDS) Powder Nasal Spray System. AUG-3387, a human-derived mAb that neutralizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was used in the present study. First, we prepared thin-film freeze-dried AUG-3387 powders (i.e., TFF AUG-3387 powders) from liquid formulations containing different levels of mAbs. The TFF AUG-3387 powder with the highest solid content (i.e., TFF AUG-3387C) was then chosen for further characterization, including the evaluation of the plume geometry, spray pattern, and particle size distribution after the powder was sprayed using the UDS Powder Nasal Spray. Finally, the deposition patterns of the TFF AUG-3387C powder sprayed using the UDS Powder delivery system were studied using 3D-printed nasal replica casts based on the CT scans of an adult and a child. It is concluded that it is feasible to intranasally deliver mAbs as dry powders by transforming the mAbs into dry powders using thin-film freeze-drying and then spraying the powder using a powder nasal spray system.


Subject(s)
Antibodies, Monoclonal , Nasal Sprays , Adult , Child , Humans , Administration, Intranasal , Powders , Chemistry, Pharmaceutical/methods , Freeze Drying , Particle Size , Dry Powder Inhalers , Administration, Inhalation , Aerosols
5.
Pharm Res ; 41(3): 501-512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326530

ABSTRACT

PURPOSE: This study aimed to test the feasibility of using Small Angle X-ray Scattering (SAXS) coupled with Density from Solution Scattering (DENSS) algorithm to characterize the internal architecture of messenger RNA-containing lipid nanoparticles (mRNA-LNPs). METHODS: The DENSS algorithm was employed to construct a three-dimensional model of average individual mRNA-LNP. The reconstructed models were cross validated with cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) to assess size, morphology, and internal structure. RESULTS: Cryo-TEM and DLS complemented SAXS, revealed a core-shell mRNA-LNP structure with electron-rich mRNA-rich region at the core, surrounded by lipids. The reconstructed model, utilizing the DENSS algorithm, effectively distinguishes mRNA and lipids via electron density mapping. Notably, DENSS accurately models the morphology of the mRNA-LNPs as an ellipsoidal shape with a "bleb" architecture or a two-compartment structure with contrasting electron densities, corresponding to mRNA-filled and empty lipid compartments, respectively. Finally, subtle changes in the LNP structure after three freeze-thaw cycles were detected by SAXS, demonstrating an increase in radius of gyration (Rg) associated with mRNA leakage. CONCLUSION: Analyzing SAXS profiles based on DENSS algorithm to yield a reconstructed electron density based three-dimensional model can be a useful physicochemical characterization method in the toolbox to study mRNA-LNPs and facilitate their development.


Subject(s)
Electrons , Liposomes , Nanoparticles , X-Rays , Scattering, Small Angle , RNA, Messenger/chemistry , X-Ray Diffraction , Nanoparticles/chemistry , Lipids/chemistry , RNA, Small Interfering/chemistry
6.
AAPS J ; 26(1): 20, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267725

ABSTRACT

Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.


Subject(s)
Connexins , Extracellular Vesicles , Drug Delivery Systems , Liposomes , Cell Membrane
7.
Int J Pharm ; 650: 123688, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38070660

ABSTRACT

A library of 16 lipid nanoparticle (LNP) formulations with orthogonally varying lipid molar ratios was designed and synthesized, using polyadenylic acid [poly(A)] as a model for mRNA, to explore the effect of lipid composition in LNPs on (i) the initial size of the resultant LNPs and encapsulation efficiency of RNA and (ii) the sensitivity of the LNPs to various conditions including cold storage, freezing (slow vs. rapid) and thawing, and drying. Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify the optimal lipid molar ratios and interactions that favorably affect the physical properties of the LNPs and enhance their stability in various stress conditions. LNPs exhibited distinct responses under each stress condition, highlighting the effect of lipid molar ratios and lipid interactions on the LNP physical properties and stability. It was then demonstrated that it is feasible to use thin-film freeze-drying to convert poly(A)-LNPs from liquid dispersions to dry powders while maintaining the integrity of the LNPs. Importantly, the residual moisture content in LNP dry powders significantly affected the LNP integrity.Residual moisture content of ≤ 0.5% or > 3-3.5% w/w negatively affected the LNP size and/or RNA encapsulation efficiency, depending on the LNP composition. Finally, it was shown that the thin-film freeze-dried LNP powders have desirable aerosol properties for potential pulmonary delivery. It was concluded that Design of Experiments can be applied to identify mRNA-LNP formulations with the desired physical properties and stability profiles. Additionally, optimizing the residual moisture content in mRNA-LNP dry powders during (thin-film) freeze-drying is crucial to maintain the physical properties of the LNPs.


Subject(s)
Lipids , Freezing , RNA, Small Interfering/genetics , RNA, Messenger
8.
Int J Pharm ; 651: 123757, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38160992

ABSTRACT

Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , Powders/chemistry , Freeze Drying , Administration, Inhalation , Particle Size , Dry Powder Inhalers , Respiratory Aerosols and Droplets , SOXC Transcription Factors
9.
Int J Pharm ; 648: 123571, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37923148
10.
AAPS PharmSciTech ; 24(7): 193, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740105

ABSTRACT

Previously, we have shown that thin-film freeze-drying can be applied to prepare dry powders of bacteria such as Lactobacillus acidophilus. Herein, we tested the viability of L. acidophilus in thin-film freeze-dried powders (TFF powders) filled in delayed-release vegetarian capsules in a simulated gastric fluid (SGF) consisting of 0.1N hydrochloric acid and sodium chloride. Initially, we determined the water removal rate from frozen thin films on relatively larger scales (i.e., 10-750 g). We then prepared and characterized two TFF powders of L. acidophilus with either sucrose and maltodextrin or sucrose and hydroxypropyl methylcellulose acetate succinate (HPMC-AS), a pH-sensitive polymer, as excipients and evaluated the viability of the bacteria after the TFF powders were filled in delayed-release vegetarian capsules and the capsules were incubated in the SGF for 30 min. On 10-750 g scales and at the settings specified, water removal from frozen thin films was faster than from slow shelf-frozen bulk solids. When the L. acidophilus in sucrose and HPMC-AS TFF powder was filled into a delayed-release capsule that was placed into another delayed-release capsule, the bacterial viability reduction after incubation in the SGF can be minimized to within 1 log in colony forming unit (CFU). However, for the L. acidophilus in sucrose and maltodextrin TFF powder, even in the capsule-in-capsule dosage form, bacterial CFU reduction was > 2 logs. TFF powders of live microorganisms containing an acid-resistant material in capsule-in-capsule delayed-release vegetarian capsules have the potential for oral delivery of those microorganisms.


Subject(s)
Lactobacillus acidophilus , Sucrose , Humans , Powders , Capsules , Vegetarians , Water
11.
Discov Nano ; 18(1): 105, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37606823

ABSTRACT

Nanomedicines are increasingly researched and used for the treatment of chronic inflammatory diseases. Herein, the effect of the size of nanoparticles on their distribution and retention in chronic inflammatory sites, as compared to healthy tissues, was studied in a mouse model with chronic inflammation in one of the hind footpads. Using PEGylated gold nanoparticles of 2, 10, 100, and 200 nm, we found that although the smaller nanoparticles of 2 and 10 nm showed greater distribution and slower clearance in the inflamed footpad than the relatively larger nanoparticles of 100 and 200 nm, the larger nanoparticles of 100 and 200 nm were more selectively distributed in the inflamed hind footpad than in the healthy hind footpad in the same mouse. Based on these findings, we prepared protein nanoparticles of 100-200 nm with albumin, IgG antibody, or anti-TNF-α monoclonal antibody (mAb). The nanoparticles can release proteins in response to high redox activity and/or low pH, conditions seen in chronic inflammation sites. We then showed that upon intravenous injection, those stimuli-responsive protein nanoparticles distributed more selectively in the inflamed footpad than free proteins and remained longer in the inflamed footpad than similar protein nanoparticles that are not sensitive to high redox activity or low pH. These findings support the feasibility of increasing the selectivity of nanomedicines and protein therapeutics to chronic inflammation sites and prolonging their retention at the sites by innovative nanoparticle engineering.

12.
Int J Pharm X ; 6: 100197, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37521246

ABSTRACT

When preparing siRNA-encapsulated solid lipid nanoparticles (siRNA-SLNs), cationic lipids are commonly included to condense and lipophilize the siRNA and thus increase its encapsulation in the SLNs. Unfortunately, cationic lipids also contribute significantly to the cytotoxicity and proinflammatory activity of the SLNs. Previously, our group developed a TNF-α siRNA-SLN formulation that showed strong activity against rheumatoid arthritis unresponsive to methotrexate in a mouse model. The siRNA-SLNs were composed of lecithin, cholesterol, an acid-sensitive stearoyl polyethylene glycol (2000) conjugate, and siRNA complexes with 1,2-dioleoyl-3trimethylammonium-propane (DOTAP), a cationic lipid. The present study was designed to study the effect of the amount of DOTAP used to complex the siRNA on the cytotoxicity and proinflammatory activity of the resultant siRNA-SLNs. A small library of siRNA-SLNs prepared at various ratios of DOTAP to siRNA (i.e., nitrogen to phosphate (N/P) ratios ranging from 34:1 to 1:1) were prepared and characterized, and the cytotoxicity and proinflammatory activity of selected formulations were evaluated in cell culture. As expected, the siRNA-SLNs prepared at the highest N/P ratio showed the highest cytotoxicity to J774A.1 macrophage cells and reducing the N/P ratio lowered the cytotoxicity of the siRNA-SLNs. Unexpectedly, the cytotoxicity of the siRNA-SLNs reached the lowest at the N/P ratios of 16:1 and 12:1, and further reducing the N/P ratio resulted in siRNA-SLNs with increased cytotoxicity. For example, siRNA-SLNs prepared at the N/P ratio of 1:1 was more cytotoxic than the ones prepared at the N/P ratio 12:1. This finding was confirmed using neutrophils differentiated from mouse MPRO cell line. The DOTAP release from the siRNA-SLNs prepared at the N/P ratio of 1:1 was faster than from the ones prepared at the N/P ratio of 12:1. The siRNA-SLNs prepared at N/P ratios of 12:1 and 1:1 showed comparable proinflammatory activities in both macrophages and neutrophils. Additionally, the TNF-α siRNA-SLNs prepared at the N/P ratios of 12:1 and 1:1 were equally effective in downregulating TNF-α expression in J774A.1 macrophages. In conclusion, it was demonstrated that at least in vitro in cell culture, reducing the amount of cationic lipids used when preparing siRNA-SLNs can generally help reduce the cytotoxicity of the resultant SLNs, but siRNA-SLNs prepared with the lowest N/P ratio are not necessarily the least cytotoxic and proinflammatory.

13.
Int J Pharm ; 640: 122990, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37127138

ABSTRACT

Intranasal vaccination by directly applying a vaccine dry powder is appealing. However, a method that can be used to transform a vaccine from a liquid to a dry powder and a device that can be used to administer the powder to the desired region(s) of the nasal cavity are critical for successful intranasal vaccination. In the present study, using a model vaccine that contains liposomal monophosphoryl lipid A and QS-21 adjuvant (AdjLMQ) and ovalbumin (OVA) as a model antigen, it was shown that thin-film freeze-drying can be applied to convert the liquid vaccine containing sucrose at a sucrose to lipid ratio of 15:1 (w/w) into dry powders, in the presence or absence of carboxymethyl cellulose sodium salt (CMC) as a mucoadhesive agent. Ultimately, the thin-film freeze-dried AdjLMQ/OVA vaccine powder containing 1.9% (w/w) of CMC (i.e., TFF AdjLMQ/OVA/CMC1.9% powder) was selected for additional evaluation because the TFF AdjLMQ/OVA/CMC1.9% powder was mucoadhesive and maintained the integrity of the antigen and the physical properties of the vaccine. Compared to the TFF AdjLMQ/OVA powder that did not contain CMC, the TFF AdjLMQ/OVA/CMC1.9% powder had a lower moisture content and a higher glass transition temperature. In addition, the TFF AdjLMQ/OVA/CMC1.9% thin films were relatively thicker than the TFF AdjLMQ/OVA thin films without CMC. When sprayed with Aptar Pharma's Unidose Powder Nasal Spray System (UDSP), the TFF AdjLMQ/OVA powder and the TFF AdjLMQ/OVA/CMC1.9% powder generated similar particle size distribution curves, spray patterns, and plume geometries. Importantly, after the TFF AdjLMQ/OVA/CMC1.9% powder was sprayed with the UDSP nasal device, the integrity of the OVA antigen and the AdjLMQ liposomes did not change. Finally, a Taguchi L4 orthogonal array was applied to identify the optimal parameters for using the UDSP device to deliver the TFF AdjLMQ/OVA/CMC1.9% powder to the middle and lower turbinate and the nasopharynx regions in both adult and child nasal replica casts. Results from this study showed that it is feasible to apply the thin-film freeze-drying technology to transform a nasal vaccine candidate from liquid to a dry powder and then use the UDSP nasal device to deliver the vaccine powder to the desired regions in the nasal cavity for intranasal vaccination.


Subject(s)
Vaccines , Humans , Child , Powders , Feasibility Studies , Administration, Intranasal , Vaccination , Freeze Drying , Antigens , Ovalbumin , Particle Size
14.
Int J Pharm ; 640: 123020, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37149110

ABSTRACT

Three-dimensional (3D) bioprinting is an emerging biofabrication technique that shows great potential in the field of tissue engineering, regenerative medicine and advanced drug delivery. Despite the current advancement of bioprinting technology, it faces several obstacles such as the challenge of optimizing the printing resolution of 3D constructs while retaining cell viability before, during, and after bioprinting. Therefore, it is of great significance to fully understand factors that influence the shape fidelity of printed structures and the performance of cells encapsulated in bioinks. This review presents a comprehensive analysis of bioprinting process parameters that influence bioink printability and cell performance, including bioink properties (composition, concentration, and component ratio), printing speed and pressure, nozzle characteristics (size, length, and geometry), and crosslinking parameters (crosslinker types, concentration, and crosslinking time). Key examples are provided to analyze how these parameters could be tailored to achieve the optimal printing resolution as well as cell performance. Finally, future prospects of bioprinting technology, including correlation between process parameters and particular cell types with predefined applications, applying statistical analysis and artificial intelligence (AI)/machine learning (ML) technique in parameter screening, and optimizing four-dimensional (4D) bioprinting process parameters, are highlighted.


Subject(s)
Bioprinting , Bioprinting/methods , Artificial Intelligence , Printing, Three-Dimensional , Tissue Engineering/methods , Regenerative Medicine , Tissue Scaffolds/chemistry
16.
Int J Pharm ; 632: 122575, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36603672

ABSTRACT

Triple-negative breast cancer (TNBC) represents 15-25 % of the new breast cancer cases diagnosed worldwide every year. TNBC is among the most aggressive and worst prognosis breast cancer, mainly because targeted therapies are not available. Herein, we developed a magnetic theranostic hybrid nanovehicle for targeted treatment of TNBC through pH-triggered tumour associated macrophages (TAMs) targeting. The lipid core of the nanovehicle was composed of a Carnaúba wax matrix that simultaneously incorporated iron oxide nanoparticles and doxorubicin (DOX) - a chemotherapeutic drug. These drug-loaded wax nanovehicles were modified with a combination of two functional and complementary molecules: (i) a mannose ligand (macrophage targeting) and (ii) an acid-sensitive sheddable polyethylene glycol (PEG) moiety (specificity). The TAMs targeting strategy relied on the mannose - mannose receptor recognition exclusively after acid-sensitive "shedding" of the PEG in the relatively low tumour microenvironment pH. The pH-induced targeting capability towards TAMs was confirmed in vitro in a J774A.1 macrophage cell line at different pH (7.4 and 6.5). Biocompatibility and efficacy of the final targeted formulations were demonstrated in vitro in the TNBC MDA-MB-231 cell line and in vivo in an M-Wnt tumour-bearing (TNBC) mouse model. A preferential accumulation of the DOX-loaded lipid nanovehicles in the tumours of M-Wnt-tumour bearing mice was observed, which resulted both on an efficient tumour growth inhibition and a significantly reduced off-target toxicity compared to free DOX. Additionally, the developed magnetic hybrid nanovehicles showed outstanding performances as T2-contrast agents in magnetic resonance imaging (r2 ≈ 400-600 mM-1·s-1) and as heat generating sources in magnetic hyperthermia (specific absorption rate, SAR ≈ 178 W·g-1Fe). These targeted magnetic hybrid nanovehicles emerge as a suitable theranostic option that responds to the urgent demand for more precise and personalized treatments, not only because they are able to offer localized imaging and therapeutic potential, but also because they allow to efficiently control the balance between safety and efficacy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Precision Medicine , Tumor-Associated Macrophages/pathology , Cell Line, Tumor , Mannose , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Polyethylene Glycols , Hydrogen-Ion Concentration , Lipids , Theranostic Nanomedicine/methods , Tumor Microenvironment
17.
Pharm Res ; 40(5): 1141-1152, 2023 May.
Article in English | MEDLINE | ID: mdl-36703028

ABSTRACT

PURPOSE: This study was designed to test the feasibility of using thin-film freezing (TFF) to prepare aerosolizable dry powders of plasmid DNA (pDNA) for pulmonary delivery. METHODS: Dry powders of pDNA formulated with mannitol/leucine (70/30, w/w) with various drug loadings, solid contents, and solvents were prepared using TFF, their aerosol properties (i.e., mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF)) were determined, and selected powders were used for further characterization. RESULTS: Of the nine dry powders prepared, their MMAD values were about 1-2 µm, with FPF values (delivered) of 40-80%. The aerosol properties of the powders were inversely correlated with the pDNA loading and the solid content in the pDNA solution before TFF. Powders prepared with Tris-EDTA buffer or cosolvents (i.e., 1,4-dioxane or tert-butanol in water), instead of water, showed slightly reduced aerosol properties. Ultimately, powders prepared with pDNA loading at 5% (w/w), 0.25% of solid content, with or without Tris-EDTA were selected for further characterization due to their overall good aerosol performance. The pDNA powders exhibited a porous matrix structure, with a moisture content of < 2% (w/w). Agarose gel electrophoresis confirmed the chemical integrity of the pDNA after it was subjected to TFF and after the TFF powder was actuated. A cell transfection study confirmed that the activity of the pDNA did not change after it was subjected to TFF. CONCLUSION: It is feasible to use TFF to produce aerosolizable pDNA dry powder for pulmonary delivery, while preserving the integrity and activity of the pDNA.


Subject(s)
DNA , Water , Powders/chemistry , Administration, Inhalation , Freezing , Edetic Acid , Aerosols/chemistry , DNA/genetics , Plasmids , Water/chemistry , Particle Size , Dry Powder Inhalers/methods
18.
Int J Pharm ; 630: 122408, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36400132

ABSTRACT

Freeze-drying, or lyophilization, is widely used to produce pharmaceutical solids that contain temperature-sensitive materials. Herein, using Escherichia coli as a model live organism, whose viability in dry powders is highly sensitive to the water content in the powders, we demonstrated that the drying rate from the frozen thin films generated by thin-film freezing (TFF) is significantly faster than from the bulk frozen solids in conventional shelf freeze-drying. This is likely because the loosely stacked frozen thin films provided a larger solid-air interface and the low thickness of the thin films provided a low mass transfer resistance. The highly porous microstructure and high specific surface area of the thin-film freeze-dried powders may also be related to the faster drying observed. Moreover, we demonstrated that TFF can be applied to produce dry powders of E. coli, a Gram-negative bacterium, or Lactobacillus acidophilus, a Gram-positive bacterium, with minimum bacterial viability loss (i.e., within one log reduction). It is concluded that the TFF technology is promising in accelerating water removal from frozen samples.


Subject(s)
Escherichia coli , Water , Water/chemistry , Freezing , Freeze Drying , Powders/chemistry
19.
Int J Pharm ; 629: 122357, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36332829

ABSTRACT

Thin-film freeze-drying is a dry powder engineering technology that involves in a rapid thin-film freezing (TFF) process followed by lyophilization to remove solvent. TFF process has been successfully used to produce pharmaceutical powders of the small and large molecule drugs as well as live organisms. This paper provides a comprehensive review of the pharmaceutical applications of TFF powders of small molecule drugs intended for pulmonary delivery or oral administration. The powders produced by the TFF process often exhibited unique physical properties such as amorphous morphology, high porosity, brittle matrix structure, and high specific surface area, and the powders also often contain loosely connected micron or submicron particles or aggregates. The TFF process parameters and formulation compositions directly affect the physical properties of the powders. These physical properties render TFF powders desirable aerodynamic properties for efficient pulmonary delivery by oral inhalation and help enhance the dissolution of poorly water-soluble small molecule drugs in the powders and thus improve their bioavailability after oral administration.


Subject(s)
Dry Powder Inhalers , Powders/chemistry , Freezing , Particle Size , Aerosols/chemistry , Administration, Inhalation
20.
Int J Pharm ; 628: 122306, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36265662

ABSTRACT

Freezing techniques are an essential part of biologics manufacturing processes, yet the formation of ice/water interfaces can impart detrimental effects on proteins. However, the absence of chemical and structural differences between ice and liquid water poses the question as to why ice can destabilize proteins. We hypothesize that the destabilizing stress of the ice-liquid water interface does not originate from the ice-water system itself but rather from the air microbubbles present during the freezing process. As the temperature decreases, the dissolved air is expelled from the ice crystal lattices in the form of microbubbles and is subsequently trapped by the advancing ice front. This newly formed air-water interface represents an additional interfacial area for the proteins to be adsorbed onto and denatured. The result showed that freezing at âˆ¼ 1 K/s led to the formation of small circular microbubbles with diameters ranging from 100 µm to 500 µm. In contrast, slower freezing resulted in the formation of larger, elongated millimeter-size bubbles. The reduction of the number of microbubbles was carried out by the deaeration process using agitation under reduced pressure at 20 kPa. The resulting deaerated (i.e., low dissolved air) protein samples were frozen and monitored for the formation of subvisible aggregates using micro-flow imaging (MFI). The results demonstrated that deaerating the samples prior to intermediate freezing (i.e., TFF) reduced the number of aggregates for both highly surface-active and low surface-active proteins (lactoferrin and bovine IgG, respectively). This reduction was more pronounced in spray freeze drying (SFD) than thin-film freezing (TFF), and less apparent in conventional lyophilization.


Subject(s)
Ice , Microbubbles , Cattle , Animals , Freezing , Freeze Drying , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...