Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Article in English | MEDLINE | ID: mdl-27643531

ABSTRACT

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Subject(s)
Diacetyl/adverse effects , Flavoring Agents/adverse effects , Lung Diseases/etiology , Sequestosome-1 Protein/metabolism , Sugar Alcohol Dehydrogenases/genetics , Ubiquitin/metabolism , Animals , Autophagy , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Inhalation Exposure , Lung Diseases/chemically induced , Lung Diseases/metabolism , Lung Diseases/pathology , Lysosomal Membrane Proteins/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Marker Protein/genetics , Olfactory Marker Protein/metabolism , Respiratory System/metabolism , Respiratory System/pathology , Sequestosome-1 Protein/genetics , Sugar Alcohol Dehydrogenases/metabolism
2.
J Toxicol Environ Health A ; 76(11): 669-89, 2013.
Article in English | MEDLINE | ID: mdl-23941636

ABSTRACT

"Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.


Subject(s)
Bronchial Hyperreactivity/chemically induced , Diacetyl/toxicity , Flavoring Agents/toxicity , Pentanones/toxicity , Trachea/drug effects , Acetic Acid/toxicity , Acetoin/toxicity , Airway Resistance/drug effects , Animals , Bronchial Hyperreactivity/physiopathology , Bronchial Provocation Tests , Cells, Cultured , Complex Mixtures/toxicity , Food , Inhalation Exposure , Male , Methacholine Chloride , Muscle, Smooth/drug effects , Muscle, Smooth/physiopathology , Rats , Rats, Sprague-Dawley , Trachea/physiopathology
3.
Int J Mol Sci ; 13(11): 13781-803, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23203034

ABSTRACT

Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.


Subject(s)
Coronary Vessels/pathology , Endothelium, Vascular/pathology , Nanotubes, Carbon/toxicity , Acetylcholine/pharmacology , Administration, Inhalation , Animals , Arterial Pressure/drug effects , Bronchoalveolar Lavage Fluid , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Dilatation, Pathologic , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Heart/anatomy & histology , Heart/drug effects , Kidney/pathology , Liver/pathology , Lung/pathology , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocardium/metabolism , Myocardium/pathology , Nitroprusside/pharmacology , Organ Size , Phenylephrine/pharmacology , Pneumonia/etiology , Pneumonia/pathology , Rats , Time Factors
4.
Am J Pathol ; 181(3): 829-44, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22894831

ABSTRACT

Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.


Subject(s)
Olfactory Bulb/pathology , Pentanones/administration & dosage , Pentanones/toxicity , Respiratory System/pathology , Administration, Inhalation , Animals , Cadherins/metabolism , Caspase 3/metabolism , Cell Death/drug effects , Diacetyl/toxicity , Epithelium/drug effects , Epithelium/pathology , Fluorescent Antibody Technique , Gene Expression Regulation/drug effects , Male , Neurons/drug effects , Neurons/pathology , Olfactory Bulb/drug effects , Olfactory Marker Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Staining and Labeling , Sugar Alcohol Dehydrogenases/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL