Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Clin Transl Med ; 13(2): e1190, 2023 02.
Article in English | MEDLINE | ID: mdl-36740402

ABSTRACT

The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.


Subject(s)
Mesothelioma , Transcription Factors , Humans , Hippo Signaling Pathway , Mesothelioma/genetics , Mesothelioma/metabolism , Mesothelioma/pathology , Mutation/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
3.
Clin Microbiol Infect ; 28(12): 1649.e1-1649.e8, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35840033

ABSTRACT

OBJECTIVE: Serogroup W and Y invasive meningococcal disease increased globally from 2000 onwards. Responding to a rapid increase in serogroup W clonal complex 11 (W:cc11) invasive meningococcal disease, the UK replaced an adolescent booster dose of meningococcal C conjugate vaccine with quadrivalent MenACWY conjugate vaccine in 2015. By 2018, the vaccine coverage in the eligible school cohorts aged 14 to 19 years was 84%. We assessed the impact of the MenACWY vaccination programme on meningococcal carriage. METHODS: An observational study of culture-defined oropharyngeal meningococcal carriage prevalence before and after the start of the MenACWY vaccination programme in UK school students, aged 15 to 19 years, using two cross-sectional studies: 2014 to 2015 "UKMenCar4" and 2018 "Be on the TEAM" (ISRCTN75858406). RESULTS: A total of 10 625 participants preimplementation and 13 438 postimplementation were included. Carriage of genogroups C, W, and Y (combined) decreased from 2.03 to 0.71% (OR 0.34 [95% CI 0.27-0.44], p < 0.001). Carriage of genogroup B meningococci did not change (1.26% vs 1.23% [95% CI 0.77-1.22], p = 0.80) and genogroup C remained rare (n = 7/10 625 vs 17/13 438, p = 0.135). The proportion of serogroup positive isolates (i.e. those expressing capsule) decreased for genogroup W by 53.8% (95% CI -5.0 - 79.8, p = 0.016) and for genogroup Y by 30.1% (95% CI 8.946·3, p = 0.0025). DISCUSSION: The UK MenACWY vaccination programme reduced carriage acquisition of genogroup and serogroup Y and W meningococci and sustained low levels of genogroup C carriage. These data support the use of quadrivalent MenACWY conjugate vaccine for indirect (herd) protection.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Adolescent , Humans , Vaccines, Conjugate , Cross-Sectional Studies , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Meningococcal Infections/microbiology , Neisseria meningitidis/genetics , United Kingdom/epidemiology
4.
Acad Emerg Med ; 29(10): 1283, 2022 10.
Article in English | MEDLINE | ID: mdl-35622452
5.
Clin Sci (Lond) ; 136(3): 197-222, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35119068

ABSTRACT

Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.


Subject(s)
Hippo Signaling Pathway , Neoplasms/drug therapy , Animals , Carcinogenesis , Humans , Neoplasms/metabolism , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
7.
Nat Cancer ; 2(11): 1224-1242, 2021 11.
Article in English | MEDLINE | ID: mdl-34870237

ABSTRACT

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proteogenomics , Carcinoma, Non-Small-Cell Lung/genetics , Fibrinogen/therapeutic use , Genomics/methods , Humans , Immune Evasion/genetics , Lung Neoplasms/genetics
8.
Sci Immunol ; 6(65): eabj2132, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797692

ABSTRACT

Alveolar macrophages are the most abundant macrophages in the healthy lung where they play key roles in homeostasis and immune surveillance against airborne pathogens. Tissue-specific differentiation and survival of alveolar macrophages rely on niche-derived factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor­ß (TGF-ß). However, the nature of the downstream molecular pathways that regulate the identity and function of alveolar macrophages and their response to injury remain poorly understood. Here, we identify that the transcription factor EGR2 is an evolutionarily conserved feature of lung alveolar macrophages and show that cell-intrinsic EGR2 is indispensable for the tissue-specific identity of alveolar macrophages. Mechanistically, we show that EGR2 is driven by TGF-ß and GM-CSF in a PPAR-γ­dependent manner to control alveolar macrophage differentiation. Functionally, EGR2 was dispensable for the regulation of lipids in the airways but crucial for the effective handling of the respiratory pathogen Streptococcus pneumoniae. Last, we show that EGR2 is required for repopulation of the alveolar niche after sterile, bleomycin-induced lung injury and demonstrate that EGR2-dependent, monocyte-derived alveolar macrophages are vital for effective tissue repair after injury. Collectively, we demonstrate that EGR2 is an indispensable component of the transcriptional network controlling the identity and function of alveolar macrophages in health and disease.


Subject(s)
Early Growth Response Protein 2/immunology , Macrophages, Alveolar/immunology , Animals , Female , Humans , Macrophages, Alveolar/pathology , Male , Mice , Pneumococcal Infections/immunology , Pneumococcal Infections/pathology , Streptococcus pneumoniae/immunology
9.
Acad Emerg Med ; 28(8): 938-939, 2021 08.
Article in English | MEDLINE | ID: mdl-34133808
10.
Lancet Infect Dis ; 21(5): 677-687, 2021 05.
Article in English | MEDLINE | ID: mdl-33482143

ABSTRACT

BACKGROUND: The incidence of invasive meningococcal disease in the UK decreased by approximately four times from 1999 to 2014, with reductions in serogroup C and serogroup B disease. Lower serogroup C invasive meningococcal disease incidence was attributable to implementation of the meningococcal serogroup C conjugate vaccine in 1999, through direct and indirect protection, but no vaccine was implemented against serogroup B disease. UK Meningococcal Carriage surveys 1-3 (UKMenCar1-3), conducted in 1999, 2000, and 2001, were essential for understanding the impact of vaccination. To investigate the decline in invasive meningococcal disease incidence, we did a large oropharyngeal carriage survey in 2014-15, immediately before the changes to meningococcal vaccines in the UK national immunisation schedule. METHODS: UKMenCar4 was a cross-sectional survey in adolescents aged 15-19 years who were enrolled from schools and colleges geographically local to one of 11 UK sampling centres between Sept 1, 2014, and March 30, 2015. Participants provided an oropharyngeal swab sample and completed a questionnaire on risk factors for carriage, including social behaviours. Samples were cultured for putative Neisseria spp, which were characterised with serogrouping and whole-genome sequencing. Data from this study were compared with the results from the UKMenCar1-3 surveys (1999-2001). FINDINGS: From the 19 641 participants (11 332 female, 8242 male, 67 not stated) in UKMenCar4 with culturable swabs and completed risk-factor questionnaires, 1420 meningococci were isolated, with a carriage prevalence of 7·23% (95% CI 6·88-7·60). Carriage prevalence was substantially lower in UKMenCar4 than in the previous surveys: carriage prevalence was 16·6% (95% CI 15·89-17·22; 2306/13 901) in UKMenCar1 (1999), 17·6% (17·05-18·22; 2873/16 295) in UKMenCar2 (2000), and 18·7% (18·12-19·27; 3283/17 569) in UKMenCar3 (2001). Carriage prevalence was lower for all serogroups in UKMenCar4 than in UKMenCar1-3, except for serogroup Y, which was unchanged. The prevalence of carriage-promoting social behaviours decreased from 1999 to 2014-15, with individuals reporting regular cigarette smoking decreasing from 2932 (21·5%) of 13 650 to 2202 (11·2%) of 19 641, kissing in the past week from 6127 (44·8%) of 13 679 to 7320 (37·3%) of 19 641, and attendance at pubs and nightclubs in the past week from 8436 (62·1%) of 13 594 to 7662 (39·0%) of 19 641 (all p<0·0001). INTERPRETATION: We show that meningococcal carriage prevalence in adolescents sampled nationally during a low incidence period (2014-15) was less than half of that in an equivalent population during a high incidence period (1999-2001). Disease and carriage caused by serogroup C was well controlled by ongoing vaccination. The prevalence of behaviours associated with carriage declined, suggesting that public health policies aimed at influencing behaviour might have further reduced disease. FUNDING: Wellcome Trust, UK Department of Health, and National Institute for Health Research.


Subject(s)
Carrier State/prevention & control , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/immunology , Adolescent , Cross-Sectional Studies , Female , Humans , Incidence , Male , Neisseria meningitidis , Neisseria meningitidis, Serogroup C , Prevalence , Risk Factors , Serogroup , United Kingdom/epidemiology , Vaccination , Young Adult
11.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Article in English | MEDLINE | ID: mdl-33039466

ABSTRACT

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Subject(s)
Adenocarcinoma/pathology , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Organoids , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Xenograft Model Antitumor Assays
12.
Zootaxa ; 4803(3): zootaxa.4803.3.7, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-33056009

ABSTRACT

The morphological limits of the genus Parabyrsopolis Ohaus (Coleoptera: Scarabaeidae: Rutelinae: Rutelini: Areodina) are redefined and Parabyrsopolis moroni new species is described from west-central Mexico. With this addition, the genus now includes five species that are distributed from southwestern United States of America to central Mexico. Diagnostic morphological characters and comparison with other Parabyrsopolis species are included, and some considerations about the morphological limits between Parabyrsopolis and Viridimicus Jameson are discussed.


Subject(s)
Coleoptera , Animals , Mexico
13.
Cell Rep ; 31(6): 107625, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402285

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3ß) a key regulator of glycolysis. Pharmacological inhibition of GSK3ß results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3ß inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , GATA6 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Cell Line, Tumor , Humans
14.
Sci Rep ; 10(1): 651, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959836

ABSTRACT

Changes in nicotinamide adenine dinucleotide (NAD+) levels that compromise mitochondrial function trigger release of DNA damaging reactive oxygen species. NAD+ levels also affect DNA repair capacity as NAD+ is a substrate for PARP-enzymes (mono/poly-ADP-ribosylation) and sirtuins (deacetylation). The ecto-5'-nucleotidase CD73, an ectoenzyme highly expressed in cancer, is suggested to regulate intracellular NAD+ levels by processing NAD+ and its bio-precursor, nicotinamide mononucleotide (NMN), from tumor microenvironments, thereby enhancing tumor DNA repair capacity and chemotherapy resistance. We therefore investigated whether expression of CD73 impacts intracellular NAD+ content and NAD+-dependent DNA repair capacity. Reduced intracellular NAD+ levels suppressed recruitment of the DNA repair protein XRCC1 to sites of genomic DNA damage and impacted the amount of accumulated DNA damage. Further, decreased NAD+ reduced the capacity to repair DNA damage induced by DNA alkylating agents. Overall, reversal of these outcomes through NAD+ or NMN supplementation was independent of CD73. In opposition to its proposed role in extracellular NAD+ bioprocessing, we found that recombinant human CD73 only poorly processes NMN but not NAD+. A positive correlation between CD73 expression and intracellular NAD+ content could not be made as CD73 knockout human cells were efficient in generating intracellular NAD+ when supplemented with NAD+ or NMN.


Subject(s)
5'-Nucleotidase/metabolism , 5'-Nucleotidase/physiology , DNA Damage , DNA Repair , NAD/metabolism , NAD/physiology , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/physiology , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology , 5'-Nucleotidase/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Sirtuins , X-ray Repair Cross Complementing Protein 1/metabolism
15.
Wellcome Open Res ; 4: 118, 2019.
Article in English | MEDLINE | ID: mdl-31544158

ABSTRACT

Carriage of Neisseria meningitidis, the meningococcus, is a prerequisite for invasive meningococcal disease (IMD), a potentially devastating infection that disproportionately afflicts infants and children. Humans are the sole known reservoir for the meningococcus, and it is carried asymptomatically in the nasopharynx of ~10% of the population. Rates of carriage are dependent on age of the host and social and behavioural factors. In the UK, meningococcal carriage has been studied through large, multi-centre carriage surveys of adolescents in 1999, 2000, and 2001, demonstrating carriage can be affected by immunisation with the capsular group C meningococcal conjugate vaccine, inducing population immunity against carriage. Fifteen years after these surveys were carried out, invasive meningococcal disease incidence had declined from a peak in 1999.  The UKMenCar4 study was conducted in 2014/15 to investigate rates of carriage amongst the adolescent population during a period of low disease incidence. The protocols and methodology used to perform UKMenCar4, a large carriage survey, are described here.

16.
J Funct Biomater ; 10(2)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200522

ABSTRACT

Tobramycin is a potent antimicrobial aminoglycoside and its effective delivery by encapsulation within nanoparticle carriers could increase its activity against infections through a combination of sustained release and enhanced uptake. Effective antimicrobial therapy against a clinically relevant model bacteria (Pseudomonas aeruginosa) requires sufficient levels of therapeutic drug to maintain a drug concentration above the microbial inhibitory concentration (MIC) of the bacteria. Previous studies have shown that loading of aminoglycoside drugs in poly(lactic-co-glycolic) acid (PLGA)-based delivery systems is generally poor due to weak interactions between the drug and the polymer. The formation of complexes of tobramycin with dioctylsulfosuccinate (AOT) allows the effective loading of the drug in PLGA-nanoparticles and such nanoparticles can effectively deliver the antimicrobial aminoglycoside with retention of tobramycin antibacterial function.

17.
Nat Metab ; 1(1): 47-57, 2019 01.
Article in English | MEDLINE | ID: mdl-31131364

ABSTRACT

Nicotinamide mononucleotide (NMN) is a biosynthetic precursor of NAD+ known to promote cellular NAD+ production and counteract age-associated pathologies associated with a decline in tissue NAD+ levels. How NMN is taken up into cells has not been entirely clear. Here we show that the Slc12a8 gene encodes a specific NMN transporter. We find that Slc12a8 is highly expressed and regulated by NAD+ in the murine small intestine. Slc12a8 knockdown abrogates the uptake of NMN in vitro and in vivo. We further show that Slc12a8 specifically transports NMN, but not nicotinamide riboside, and that NMN transport depends on the presence of sodium ion. Slc12a8 deficiency significantly decreases NAD+ levels in the jejunum and ileum, which is associated with reduced NMN uptake as traced by doubly labeled isotopic NMN. Finally, we observe that Slc12a8 expression is upregulated in the aged murine ileum, which contributes to the maintenance of ileal NAD+ levels. Our work identifies the first NMN transporter and demonstrates that Slc12a8 has a critical role in regulating intestinal NAD+ metabolism.

19.
Nat Metab ; 1(7): 743, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32694647

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Mutat Res ; 813: 20-30, 2019 01.
Article in English | MEDLINE | ID: mdl-30590231

ABSTRACT

Endonuclease III is a DNA glycosylase previously known for its repair activity on oxidative pyrimidine damage. Uracil is a deamination product derived from cytosine. Uracil DNA N-glycosylase (UNG) and mismatch-specific uracil DNA glycosylase (MUG) are two known repair enzymes with enzymatic activity on uracil in E. coli. Here we report a G/U specific uracil DNA glycosylase activity in E. coli endonuclease III (endo III, Nth), which is comparable to MUG but significantly lower than its thymine glycol DNA glycosylase activity. The possibility that the novel activity is due to contamination is ruled out by expressing the wild type nth gene and an active site mutant in a uracil-repair-deficient genetic background. Consistent with the biochemical analysis, analyses of lac+ reversion and mutation frequencies in the presence of human AID induced cytosine deamination indicate the endo III can play a role in repair of cytosine deamination. In addition to E. coli, UDG activity is found in endo III homologs from other organisms. E. coli nucleoside diphosphate kinase (Ndk) was also tested for UDG activity because it was previously reported as an uracil repair enzyme. Under the assay conditions, very limited UDG activity was detected in single-stranded uracil-containing DNA from E. coli Ndk and no UDG activity was detected in human Ndk homologs. This study provides definitive clarification on uracil repair by endo III and reveals that endonuclease III is a G/U-specific UDG that can be viewed as a prototype for the human MBD4 uracil DNA glycosylase.


Subject(s)
DNA, Bacterial/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Escherichia coli Proteins/metabolism , Uracil/metabolism , DNA Repair , Deamination , Humans , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...