Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23449997

ABSTRACT

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Subject(s)
Crops, Agricultural/growth & development , Fruit/growth & development , Insecta/physiology , Pollination , Animals , Bees/physiology , Flowers/physiology
2.
Ecol Lett ; 14(10): 1062-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21806746

ABSTRACT

Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.


Subject(s)
Bees/physiology , Ecosystem , Pollination/physiology , Agriculture , Animals , Biodiversity
3.
Proc Natl Acad Sci U S A ; 108(14): 5909-14, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21422295

ABSTRACT

Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers' inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield-resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961-2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached.


Subject(s)
Agriculture/statistics & numerical data , Ecosystem , Models, Biological , Pollination , Agriculture/methods , Agriculture/trends , United Nations
4.
Commun Integr Biol ; 2(1): 37-9, 2009.
Article in English | MEDLINE | ID: mdl-19704865

ABSTRACT

A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961-2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first "yield" prediction but strong evidence for the second "area" prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without pollinators) showed higher growth in yield and lower expansion in area than expected in a pollination shortage scenario. We propose that pollination management for highly pollinator-dependent crops, such us renting hives or hand pollination, might have compensated for pollinator limitation of yield.

5.
Ann Bot ; 103(9): 1579-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19339297

ABSTRACT

BACKGROUND AND AIMS: Productivity of many crops benefits from the presence of pollinating insects, so a decline in pollinator abundance should compromise global agricultural production. Motivated by the lack of accurate estimates of the size of this threat, we quantified the effect of total loss of pollinators on global agricultural production and crop production diversity. The change in pollinator dependency over 46 years was also evaluated, considering the developed and developing world separately. METHODS: Using the extensive FAO dataset, yearly data were compiled for 1961-2006 on production and cultivated area of 87 important crops, which we classified into five categories of pollinator dependency. Based on measures of the aggregate effect of differential pollinator dependence, the consequences of a complete loss of pollinators in terms of reductions in total agricultural production and diversity were calculated. An estimate was also made of the increase in total cultivated area that would be required to compensate for the decrease in production of every single crop in the absence of pollinators. KEY RESULTS: The expected direct reduction in total agricultural production in the absence of animal pollination ranged from 3 to 8 %, with smaller impacts on agricultural production diversity. The percentage increase in cultivated area needed to compensate for these deficits was several times higher, particularly in the developing world, which comprises two-thirds of the land devoted to crop cultivation globally. Crops with lower yield growth tended to have undergone greater expansion in cultivated area. Agriculture has become more pollinator-dependent over time, and this trend is more pronounced in the developing than developed world. CONCLUSIONS: We propose that pollination shortage will intensify demand for agricultural land, a trend that will be more pronounced in the developing world. This increasing pressure on supply of agricultural land could significantly contribute to global environmental change.


Subject(s)
Agriculture/economics , Crops, Agricultural/growth & development , Pollination/physiology , Animals , Biodiversity , Time Factors
6.
Curr Biol ; 18(20): 1572-5, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18926704

ABSTRACT

There is evidence that pollinators are declining as a result of local and global environmental degradation [1-4]. Because a sizable proportion of the human diet depends directly or indirectly on animal pollination [5], the issue of how decreases in pollinator stocks could affect global crop production is of paramount importance [6-8]. Using the extensive FAO data set [9], we compared 45 year series (1961-2006) in yield, and total production and cultivated area of pollinator-dependent and nondependent crops [5]. We investigated temporal trends separately for the developed and developing world because differences in agricultural intensification, and socioeconomic and environmental conditions might affect yield and pollinators [10-13]. Since 1961, crop yield (Mt/ha) has increased consistently at average annual growth rates of approximately 1.5%. Temporal trends were similar between pollinator-dependent and nondependent crops in both the developed and developing world, thus not supporting the view that pollinator shortages are affecting crop yield at the global scale. We further report, however, that agriculture has become more pollinator dependent because of a disproportionate increase in the area cultivated with pollinator-dependent crops. If the trend toward favoring cultivation of pollinator-dependent crops continues, the need for the service provided by declining pollinators will greatly increase in the near future.


Subject(s)
Agriculture/trends , Crops, Agricultural/supply & distribution , Ecosystem , Pollination , Agriculture/economics , Animals , Bees/physiology , Conservation of Natural Resources/economics , Crops, Agricultural/economics , Food Supply/economics
SELECTION OF CITATIONS
SEARCH DETAIL