Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37763475

ABSTRACT

This work presents the possibilities of producing a substitute for a commercial matrix material for sintered metal-diamond tools which is characterized by increased tribological properties required in machining natural stones and concrete. In this study, the improvement in wear behavior of sintered pre-alloyed matrix caused by a thermal treatment was investigated. Several mixtures made of commercially available powders were homogenized by ball milling and consolidated at 900 °C using the spark plasma sintering (SPS) method. During cooling down, the specimens were subjected to isothermal holding at 350 or 250 °C for 1 h. After consolidation, all specimens were tested for density and hardness, whereas selected specimens were characterized by scanning electron microscopy (SEM) and flexural strength tests. The specimens made of BDCM50 powder (a mixture of the base and pre-alloyed powders in 50:50 proportion) shows excellent properties including σ0.2 = 1045 MPa in the three-point bending test and HV10 ≈ 380. Resistance to abrasive wear evaluated in both three-body and two-body conditions in the MWT abrasion test was estimated at Ai3=18.1±3.9 µm/20 m and Ai2=95.9±11.8 µm/20 m, respectively. A series of diamond-impregnated specimens (segments) was also produced and tested for wear rate on abrasive concrete. The potential graphitization of the diamond grits was investigated using Raman spectroscopy and X-ray diffraction. As a reference, both the base Fe-Mn-Cu-Sn-C and commercially available Co+20%WC alloy were used to compare selected properties of the investigated materials. It has been proved that heat-treated specimens made of the base mixture modified with pre-alloyed powders are characterized by increased hardness and resistance to abrasive wear. The BDCM50 matrix has a negligible effect on diamond graphitization and shows excellent field performance, which makes it a good potential substitute for replacing Co+20%WC in sintered diamond-impregnated tools.

2.
Materials (Basel) ; 14(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916742

ABSTRACT

The work presents the possibility of fabricating materials for use as a matrix in sintered metallic-diamond tools with increased mechanical properties and abrasion wear resistance. In this study, the effect of micro-sized SiC, Al2O3, and ZrO2 additives on the wear behaviour of dispersion-strengthened metal-matrix composites was investigated. The development of metal-matrix composites (based on Fe-Mn-Cu-Sn-C) reinforced with micro-sized particles is a new approach to the substitution of critical raw materials commonly used for the matrix in sintered diamond-impregnated tools used for the machining of abrasive stone and concrete. The composites were prepared using spark plasma sintering (SPS). Apparent density, microstructural features, phase composition, Young's modulus, hardness, and abrasion wear resistance were determined. An increase in the hardness and wear resistance of the dispersion-strengthened composites as compared to the base material (Fe-Mn-Cu-Sn-C) and the commercial alloy Co-20% WC provides metallic-diamond tools with high-performance properties.

3.
Materials (Basel) ; 12(14)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336839

ABSTRACT

High-purity Zr has been observed to undergo a phase transformation from the α-phase to the hexagonal ω-phase under high pressure generated either statically or by shock loading. The transition pressure from α-Zr to ω-Zr at 300 K is 2.10 GPa. The main aim of this research was to determine the conditions of α-Zr in ω-Zr transformation and the state of stresses after the high-pressure pressing and sintering of zirconium powders. Commercially acquired zirconium powders of 99.9% and 98.8% purity were used in this study. Qualitative and quantitative phase analysis of the materials was carried out using X-ray diffraction. The materials were statically pressed and sintered using a Bridgman-type toroidal apparatus at under 4.0 and 7.8 GPa. After pressing, the transformation proceeded for the zirconium powder containing 98.8% purity (with hydrides admixture) but did not occur for the high-purity zirconium powders with 99.9% purity. The zirconium powders were sintered using the HPHT (High Pressure-High Temperature) method at temperatures of 1273 K and 1473 K. The transformation proceeded for both powders. The highest contribution of the ω-Zr phase was obtained in the zirconium (98.8% purity with the hydrides contents) sintered for 1 min at a temperature of 1473 K and a pressure of 7.8. The ω-phase content was 87 wt.%. The stress measurement was performed for the pressed and sintered materials using the sin2ψ X-ray diffraction method. The higher sintering temperature resulted in a decrease of the residual stresses in the ω-Zr phase for the sintered zirconium. The higher levels of stress limited the transformation of the α-Zr phase into the ω-Zr phase. Investigated materials characterized by higher compressive macrostresses were also typical of the greater stability of the ω-Zr phase at high temperatures.

4.
Materials (Basel) ; 10(5)2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28772824

ABSTRACT

Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti5Si3 silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

SELECTION OF CITATIONS
SEARCH DETAIL
...