Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892628

ABSTRACT

This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.


Subject(s)
Akkermansia , Gastrointestinal Microbiome , Noncommunicable Diseases , Probiotics , Humans , Gastrointestinal Microbiome/physiology , Probiotics/therapeutic use , Animals , Noncommunicable Diseases/prevention & control , Noncommunicable Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Verrucomicrobia , Brain-Gut Axis/physiology , Obesity/microbiology , Obesity/therapy , Neoplasms/therapy , Neoplasms/microbiology , Diabetes Mellitus/therapy , Diabetes Mellitus/microbiology
2.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445781

ABSTRACT

The risk of losing a transplanted organ is high, and non-invasive markers to warn of this phenomenon are still being sought. We investigated the impact of post-transplant microchimerism on the function of the transplanted kidney. The study included 100 kidney transplant recipients, mostly women. All transplanted organs were from opposite-sex deceased donors. Microchimerism was assessed using multiplex PCR. Male DNA was detected in all urine samples from female recipients and in 13/56 blood samples from female kidney recipients. Female DNA was found in 31/44 urine samples from male recipients, but in none of the blood samples. Microchimerism in the urine of female recipients correlated positively with blood urea (Rs = 0.45; p = 5.84 × 10-4) and K+ ions (Rs = 0.29; p = 0.03), while microchimerism in the blood of female recipients also correlated positively with blood urea (Rs = 0. 28; p = 0.04), cystatin C (Rs = 0.31; p = 0.02) and the number of incompatible HLA alleles (Rs = 0.42; p = 0.01). A history of DGF was associated with higher urinary donor DNA concentrations in female recipients.: Post-transplant microchimerism may serve as a potential marker of chronic kidney rejection.


Subject(s)
Kidney Transplantation , Humans , Male , Female , Kidney Transplantation/adverse effects , Chimerism , Transplantation Chimera , Graft Rejection/genetics , DNA/genetics , Tissue Donors , Urea
3.
Front Microbiol ; 14: 1125022, 2023.
Article in English | MEDLINE | ID: mdl-36937257

ABSTRACT

Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.

4.
Biomedicines ; 11(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36979931

ABSTRACT

As pharmacology and science progress, we discover new generations of medicines. This relationship is a response to the increasing demand for medicaments and is powered by progress in medicine and research about the respective entities. However, we have questions about the efficiency of pharmacotherapy in individual groups of patients. The effectiveness of therapy is controlled by many variables, such as genetic predisposition, age, sex and diet. Therefore, we must also pay attention to the microbiota, which fulfill a lot of functions in the human body. Drugs used in psychiatry, gastroenterology, diabetology and other fields of medicine have been demonstrated to possess much potential to change the composition and probably the function of the intestinal microbiota, which consequently creates long-term risks of developing chronic diseases. The article describes the amazing interactions between gut microbes and drugs currently used in healthcare.

SELECTION OF CITATIONS
SEARCH DETAIL
...