Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Mater ; 16(6)2021 10 04.
Article in English | MEDLINE | ID: mdl-34544052

ABSTRACT

Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Surface-Active Agents/chemistry , Administration, Cutaneous , Animals , Antimalarials/administration & dosage , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/chemistry , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Humans , Skin/metabolism , Solubility , Swine
2.
Mater Sci Eng C Mater Biol Appl ; 109: 110547, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228935

ABSTRACT

Autologous leukocyte- and platelet-rich plasma (L-PRP) combined with hyaluronic acid (HA) has been widely used in local applications for cartilage and bone regeneration. The association between L-PRP and HA confers structural and rheological changes that differ among individual biomaterials but has not been investigated. Therefore, the standardization and characterization of L-PRP-HA are important to consider when comparing performance results to improve future clinical applications. To this end, we prepared semi-interpenetrating polymer networks (semi-IPNs) of L-PRP and HA and characterized their polymerization kinetics, morphology, swelling ratio, stability and rheological behavior, which we found to be tunable according to the HA molar mass (MM). Mesenchymal stem cells derived from human adipose tissue (h-AdMSCs) seeded in the semi-IPNs had superior viability and chondrogenesis and osteogenesis capabilities compared to the viability and capabilities of fibrin. We have demonstrated that the preparation of the semi-IPNs under controlled mixing ensured the formation of cell-friendly hydrogels rich in soluble factors and with tunable properties according to the HA MM, rendering them suitable for clinical applications in regenerative medicine.


Subject(s)
Adipose Tissue/metabolism , Fibrin , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells/metabolism , Platelet-Rich Plasma/chemistry , Regenerative Medicine , Adipose Tissue/cytology , Cells, Cultured , Female , Fibrin/chemistry , Fibrin/pharmacology , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Mesenchymal Stem Cells/cytology
3.
Antioxidants (Basel) ; 8(10)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581509

ABSTRACT

The aim of this study was to develop a phytocosmetic sunscreen emulsion with antioxidant effect, containing a blend of flavonoid-enriched plant extracts. In vitro sun protection factor, antioxidant activity, skin irritation, photostability, cutaneous permeation, and retention of flavonoids were evaluated. Thermodynamically stable emulsions were obtained and tested for sensorial analysis after loading the blend of extracts. The selected emulsion was stable when stored at low temperatures (5 C), for which after 120 days the concentration of quercetin and rutin were above their limit of quantification, i.e., 2.8 ± 0.39 µg/mL and 30.39 ± 0.39 µg/mL, respectively. Spreadability, low rupture strength and adhesiveness were shown to be similar to a conventional topical product. Higher brittleness, pseudo-plastic, and viscoelastic behaviors were also recorded for the developed phytocosmetic sunscreen. The product presented a critical wavelength of 387.0 nm and ultraviolet rays A and B (UVA/UVB) rate of 0.78, confirming that the developed formulation shows capacity for UVA/UVB protection, protecting skin against damages caused by Ultraviolet (UV) radiation. Rutin was shown to permeate the skin barrier and was also quantified in the stratum corneum (3.27 ± 1.92 µg/mL) by tape stripping and retention test (114.68 ± 8.70 µg/mL). The developed flavonoid-enriched phytocosmetic was shown to be non-irritant to skin by an in vitro assay. Our results confirm the antioxidant activity, sun protection, and physical properties of the developed phytocosmetic for topical application.

SELECTION OF CITATIONS
SEARCH DETAIL